
MATLAB® Compiler SDK™
Java User's Guide

R2022b



How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Compiler SDK™ Java User's Guide
© COPYRIGHT 2006–2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2015 Online only New for Version 6.0 (Release 2015a)
September 2015 Online only Revised for Version 6.1 (Release 2015b)
October 2015 Online only Rereleased for Version 6.0.1 (Release 2015aSP1)
March 2016 Online only Revised for Version 6.2 (Release 2016a)
September 2016 Online only Revised for Version 6.3 (Release R2016b)
March 2017 Online only Revised for Version 6.3.1 (Release R2017a)
September 2017 Online only Revised for Version 6.4 (Release R2017b)
March 2018 Online only Revised for Version 6.5 (Release R2018a)
September 2018 Online only Revised for Version 6.6 (Release R2018b)
March 2019 Online only Revised for Version 6.6.1 (Release R2019a)
September 2019 Online only Revised for Version 6.7 (Release R2019b)
March 2020 Online only Revised for Version 6.8 (Release R2020a)
September 2020 Online only Revised for Version 6.9 (Release R2020b)
March 2021 Online only Revised for Version 6.10 (Release R2021a)
September 2021 Online only Revised for Version 6.11 (Release R2021b)
March 2022 Online only Revised for Version 7.0 (Release R2022a)
September 2022 Online only Revised for Version 7.1 (Release R2022b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents


Overview
1

Product Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
How Does Java Package Deployment Work? . . . . . . . . . . . . . . . . . . . . . . . 1-2

Configure Your Environment for Generating Java Packages . . . . . . . . . . . 1-3
Install JDK or JRE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
Set JAVA_HOME Environment Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
Set CLASSPATH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4
Set Shared Library Path Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5

Programming
2

Integrate Simple MATLAB Function into Java Application . . . . . . . . . . . . 2-2
Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2

How MATLAB Compiler SDK Java Integration Works . . . . . . . . . . . . . . . . . 2-5
MWArray Data Conversion Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
Automatic and Manual Conversion to MATLAB Types . . . . . . . . . . . . . . . . 2-5
Function Signatures Generated by MATLAB Compiler SDK . . . . . . . . . . . . 2-6
Interaction Between MATLAB Compiler SDK and JVM . . . . . . . . . . . . . . . 2-7

Limitations on Multiple Packages in Single Java Application . . . . . . . . . . 2-8
Combine Packages with MATLAB Function Handles . . . . . . . . . . . . . . . . . 2-8
Combining Packages with Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10

Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12
Error Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12
Handle Checked Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12
Handle Unchecked Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14
Alternatives to Using System.exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16

Manage MATLAB Resources in JVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17
Name MATLAB Objects for Resource Maintenance . . . . . . . . . . . . . . . . . 2-17
Release Resources of MATLAB Objects . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18

Interaction Between MATLAB Compiler SDK and JVM . . . . . . . . . . . . . . 2-19

Specify Parallel Computing Toolbox Profile in Java Application . . . . . . . 2-20
Step 1: Write Parallel Computing Toolbox Code . . . . . . . . . . . . . . . . . . . . 2-20
Step 2: Set Parallel Computing Toolbox Profile . . . . . . . . . . . . . . . . . . . . 2-21

iii

Contents



Step 3: Compile Your Code into Java Package . . . . . . . . . . . . . . . . . . . . . 2-21
Step 4: Write Java Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22
Compile and Run Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22

Dynamically Specify Options to MATLAB Runtime . . . . . . . . . . . . . . . . . . 2-24
What Options Can You Specify? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-24
Sett and Retrieve MATLAB Runtime Option Values Using MWApplication

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-24

Convert Data Between Java and MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . 2-26
Automatic Conversion to MATLAB Types . . . . . . . . . . . . . . . . . . . . . . . . 2-26
Manual Conversion of Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-27
Handle Return Values Of Unknown Type . . . . . . . . . . . . . . . . . . . . . . . . . 2-31
Pass Java Objects by Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-34

Set Java Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-38
Set Java System Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-38
Ensure a Consistent GUI Appearance . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-38

Block Console Display When Creating Figures in Java . . . . . . . . . . . . . . 2-39

Ensure Multiplatform Portability for Java . . . . . . . . . . . . . . . . . . . . . . . . . 2-41

Define Embedding and Extraction Options for Deployable Java Archive
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-43

Extraction Options Using MWComponentOptions Class . . . . . . . . . . . . . 2-43
Extraction Options Using Environment Variables . . . . . . . . . . . . . . . . . . 2-45

Distribute Integrated Java Applications
3

Package Java Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2

About the MATLAB Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
How is MATLAB Runtime Different from MATLAB? . . . . . . . . . . . . . . . . . . 3-3
Performance Considerations for MATLAB Runtime . . . . . . . . . . . . . . . . . . 3-3

Distribute to End Users
4

MATLAB Runtime Path Settings for Development and Testing . . . . . . . . . 4-2
Path for Java Development on All Platforms . . . . . . . . . . . . . . . . . . . . . . . 4-2
Path Modifications Required for Accessibility . . . . . . . . . . . . . . . . . . . . . . 4-2
Windows Settings for Development and Testing . . . . . . . . . . . . . . . . . . . . 4-2
Linux Settings for Development and Testing . . . . . . . . . . . . . . . . . . . . . . . 4-2
OS X Settings for Development and Testing . . . . . . . . . . . . . . . . . . . . . . . 4-2

Set MATLAB Runtime Path for Deployment . . . . . . . . . . . . . . . . . . . . . . . . 4-4
Library Path Environment Variables and MATLAB Runtime Folders . . . . . . 4-4

iv Contents



Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
macOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
Set Path Permanently on UNIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6

Sample Java Applications
5

Display MATLAB Plot in Java Application . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2
Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2
Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2

Create Java Application with Multiple MATLAB Functions . . . . . . . . . . . . 5-6
spectralanalysis Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6
Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6
Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6

Assign Multiple MATLAB Functions to Java Class . . . . . . . . . . . . . . . . . . 5-11
MatrixMathApp Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11
Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11
Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11
Understanding the getfactor Program . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-16

Create Java Phone Book Application Using Structure Array . . . . . . . . . . 5-18
Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-18
Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-18

Pass Java Objects to MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-22
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-22
OptimDemo Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-22
Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-22
Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-23

Use MATLAB Class in Java Application . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-28
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-28
Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-28

Working with MATLAB Figures and Images
6

Roles in Working with Figures and Images . . . . . . . . . . . . . . . . . . . . . . . . . 6-2

Render MATLAB Image Data in Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3
Working with Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3
Create Buffered Images from MATLAB Array . . . . . . . . . . . . . . . . . . . . . . 6-4

v



Creating Scalable Web Applications Using RMI
7

Remote Method Invocation for Client-Server Applications . . . . . . . . . . . . 7-2

Run Client and Server Using RMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3
RMI Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3
Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3
Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3
Run Client and Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5

Represent Native Java Cell and Struct Arrays . . . . . . . . . . . . . . . . . . . . . . . 7-7
Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7
Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-8

Troubleshooting
8

Common Failure Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2

Reference Information for Java
9

Requirements and Limitations of MATLAB Compiler SDK Java Target . . 9-2
System Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2
Limitations of MATLAB Compiler SDK Java Target . . . . . . . . . . . . . . . . . . 9-2
Path Modifications Required for Accessibility . . . . . . . . . . . . . . . . . . . . . . 9-2

Rules for Data Conversion Between Java and MATLAB . . . . . . . . . . . . . . . 9-3
Java to MATLAB Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3
MATLAB to Java Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-4
Unsupported MATLAB Array Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-7

Programming Interfaces Generated by MATLAB Compiler SDK . . . . . . . . 9-8
APIs Based on MATLAB Function Signatures . . . . . . . . . . . . . . . . . . . . . . 9-8
Standard API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-8
mlx API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-9
Code Fragment: Signatures Generated for the myprimes Example . . . . . 9-10

Share MATLAB Runtime Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-11
Advantages and Disadvantages of Using a Singleton . . . . . . . . . . . . . . . . 9-11

Functions
10

vi Contents



Overview

• “Product Overview” on page 1-2
• “Configure Your Environment for Generating Java Packages” on page 1-3

1



Product Overview

How Does Java Package Deployment Work?
There are two kinds of deployment:

• Installing the generated packages and setting up support for them on a development machine so
that they can be accessed by a developer who seeks to use them in writing a Java application.

• Deploying support for the generated packages when they are accessed at run time on an end user
machine.

To accomplish this kind of deployment, you must make sure that the installer you create for the
application takes care of supporting the Java packages on the target machine. In general, this
means MATLAB Runtime must be installed on the target machine. You must also install or
distribute the compiler generated packages.

Note Java packages created with the MATLAB Compiler SDK product are dependent on the
version of MATLAB with which they were built.

1 Overview

1-2



Configure Your Environment for Generating Java Packages
In this section...
“Install JDK or JRE” on page 1-3
“Set JAVA_HOME Environment Variable” on page 1-3
“Set CLASSPATH” on page 1-4
“Set Shared Library Path Variable” on page 1-5

Before you can generate Java packages using MATLAB Compiler SDK or run Java applications, ensure
that your Java environment is properly configured. You must verify that:

• Your development system uses a version of the Java Developer’s Kit (JDK™) that is compatible
with MATLAB. For updated Java system requirements, see MATLAB Interfaces to Other
Languages.

• The JAVA_HOME environment variable is set to the folder containing your Java installation.
• Your classpath contains the MATLAB javabuilder library JAR file and the JAR files for the

packages containing your compiled MATLAB code. You can specify a classpath either in the
javac command or in the CLASSPATH system environment variable.

• Your target machine has MATLAB or MATLAB Runtime installed. For instructions on how to install
MATLAB Runtime, see “Install and Configure MATLAB Runtime”“Install and Configure MATLAB
Runtime”.

Install JDK or JRE
To develop Java applications, you must install the proper version of the Java Developer's Kit (JDK). If
you are not compiling MATLAB code or developing Java applications, you can install the Java Runtime
Environment (JRE™) instead of the JDK to run Java applications.

1 Verify the version of Java your MATLAB installation is using by running the following MATLAB
command:

version -java
2 Download and install the JDK with the same major version from https://adoptopenjdk.net/. For

example, if version -java returns Java 1.8.X, install OpenJDK 8.

In Windows®, you can automatically set the JAVA_HOME environment variable during installation
by selecting the Set JAVA_HOME variable option on the Custom Setup screen.

Set JAVA_HOME Environment Variable
After you install the JDK or the JRE, set the system environment variable JAVA_HOME to your Java
installation folder if you have not already done so during installation.

1 Use the following table to set JAVA_HOME permanently according to your operating system.

 Configure Your Environment for Generating Java Packages

1-3

https://www.mathworks.com/support/requirements/language-interfaces.html
https://www.mathworks.com/support/requirements/language-interfaces.html
https://adoptopenjdk.net/


Oper
ating
Syste
m

Procedure

Windo
ws

1 Run C:\Windows\System32\SystemPropertiesAdvanced.exe and click
the Environment Variables... button.

2 Select the system variable JAVA_HOME and click Edit....

If you do not have administrator rights on the machine, select the user variable
JAVA_HOME instead of the system variable.

3 Click New and add the path to your Java installation folder. For example,
C:\Program Files\AdoptOpenJDK\jdk-8.0.282.8-hotspot.

4 Click OK to apply the change.
Linux
®

In a Bash shell, enter the following commands:

echo "export JAVA_HOME=<path_to_Java_install>" >> ~/.bash_profile

source ~/.bash_profile

macO
S
(Moja
ve
10.14
or
Earlie
r)

In a Bash shell, enter the following commands:

echo "export JAVA_HOME=<path_to_Java_install>" >> ~/.profile

source ~/.profile

macO
S
(Catal
ina
10.15
or
Later)

In a Zsh shell, enter the following commands:

echo "export JAVA_HOME=<path_to_Java_install>" >> ~/.zprofile

source ~/.zprofile

2 If you are compiling MATLAB code, verify that MATLAB reads the correct value of JAVA_HOME.

At the MATLAB command prompt, type getenv JAVA_HOME to display the value of JAVA_HOME.

Set CLASSPATH

To build and run a Java application that uses a component generated by MATLAB Compiler SDK, the
class path must include:

• Classes in the com.mathworks.toolbox.javabuilder package, which is located in
matlabroot/toolbox/javabuilder/jar/javabuilder.jar, where matlabroot represents
your MATLAB or MATLAB Runtime installation folder.

• Java packages that you have developed.

When you compile a Java application, you must specify a classpath either in the javac command or
in the CLASSPATH system environment variable. Similarly, when you deploy a Java application, the

1 Overview

1-4



end user must specify a classpath either in the java command or in the CLASSPATH system
environment variable. For an example on setting the class path, see “Compile and Run MATLAB
Generated Java Application”.

Set Shared Library Path Variable

Add the bin subfolder of your Java installation to your shared library path environment variable.

Use the following table to set the library path according to your operating system.

Opera
ting
Syste
m

Procedure

Windo
ws

The OpenJDK installer for Windows automatically sets the library path during installation. If
you do not use the installer, complete the following steps to set the PATH environment
variable permanently.

1 Run C:\Windows\System32\SystemPropertiesAdvanced.exe and click the
Environment Variables... button.

2 Select the system variable Path and click Edit....

If you do not have administrator rights on the machine, select the user variable Path
instead of the system variable.

3 Click New and add the path to the folder <path_to_Java_install>\bin.
4 Click OK to apply the change.

Linux In a Bash shell, enter the following commands:

echo "export JAVA_HOME=<path_to_Java_install>/bin" >> ~/.bash_profile

source ~/.bash_profile

macOS
(Mojav
e
10.14
or
Earlier
)

In a Bash shell, enter the following commands:

echo "export DYLD_LIBRARY_PATH=$DYLD_LIBRARY_PATH:<path_to_Java_install>/bin" >> ~/.profile

source ~/.bash_profile

macOS
(Catali
na
10.15
or
Later)

In a Zsh shell, enter the following commands:

echo "export DYLD_LIBRARY_PATH=$DYLD_LIBRARY_PATH:<path_to_Java_install>/bin" >> ~/.zprofile

source ~/.zprofile

Note In order to run Java applications that contain compiled MATLAB code, you must include the
MATLAB or MATLAB Runtime library folders in your system library path. For details, see “Set
MATLAB Runtime Path for Deployment”.

 Configure Your Environment for Generating Java Packages

1-5



See Also

Related Examples
• “Install and Configure MATLAB Runtime”
• “Set MATLAB Runtime Path for Deployment”
• “Generate Java Package and Build Java Application”

1 Overview

1-6



Programming

• “Integrate Simple MATLAB Function into Java Application” on page 2-2
• “How MATLAB Compiler SDK Java Integration Works” on page 2-5
• “Limitations on Multiple Packages in Single Java Application” on page 2-8
• “Error Handling” on page 2-12
• “Manage MATLAB Resources in JVM” on page 2-17
• “Interaction Between MATLAB Compiler SDK and JVM” on page 2-19
• “Specify Parallel Computing Toolbox Profile in Java Application” on page 2-20
• “Dynamically Specify Options to MATLAB Runtime” on page 2-24
• “Convert Data Between Java and MATLAB” on page 2-26
• “Set Java Properties” on page 2-38
• “Block Console Display When Creating Figures in Java” on page 2-39
• “Ensure Multiplatform Portability for Java” on page 2-41
• “Define Embedding and Extraction Options for Deployable Java Archive” on page 2-43

Note For examples of these tasks, see the sample Java applications in this documentation.

For information about deploying your application after you complete these tasks, see “How Does Java
Package Deployment Work?” on page 1-2.

2



Integrate Simple MATLAB Function into Java Application
This example shows how to invoke a MATLAB method that generates a magic square in a Java
application.

Files
MATLAB Function
Location

matlabroot\toolbox\javabuilder\Examples\MagicSquareExample
\MagicDemoComp\makesqr.m

Java Code Location matlabroot\toolbox\javabuilder\Examples\MagicSquareExample
\MagicDemoJavaApp\getmagic.java

Procedure
1 Copy the MagicSquareExample folder that ships with MATLAB to your work folder:

copyfile(fullfile(matlabroot,'toolbox','javabuilder','Examples','MagicSquareExample'))

At the MATLAB command prompt, navigate to the new MagicSquareExample\MagicDemoComp
subfolder in your work folder.

2 Examine the makesqr.m function.

function y = makesqr(x)
y = magic(x);

At the MATLAB command prompt, enter makesqr(5).

The output is a 5-by-5 matrix.

    17    24     1     8    15
    23     5     7    14    16
     4     6    13    20    22
    10    12    19    21     3
    11    18    25     2     9

3 Create a Java package that encapsulates makesqr.m by using the Library Compiler app or
compiler.build.javaPackage.

Use the following information for your project:

Package Name magicsquare
Class Name magic
File to Compile makesqr.m

For example, if you are using compiler.build.javaPackage, type:
buildResults = compiler.build.javaPackage('makesqr.m', ...
    'PackageName','magicsquare', ...
    'ClassName','magic');

For more details, see the instructions in “Generate Java Package and Build Java Application”.
4 Write source code for a Java application that accesses the MATLAB function.

The sample application for this example is in MagicSquareExample\MagicDemoJavaApp
\getmagic.java.

2 Programming

2-2



getmagic.java
/* Necessary package imports */
import com.mathworks.toolbox.javabuilder.*;
import magicsquare.*;

/*
 * getmagic class computes a magic square of order N. The
 * positive integer N is passed on the command line.
 */
class getmagic
{
   public static void main(String[] args)
   {
      MWNumericArray n = null;   /* Stores input value */
      Object[] result = null;    /* Stores the result */
      magic theMagic = null;     /* Stores magic class instance */

      try
      {
         /* If no input, exit */
         if (args.length == 0)
         {
            System.out.println("Error: must input a positive integer");
            return;
         }

         /* Convert and print input value*/
         n = new MWNumericArray(Double.valueOf(args[0]),MWClassID.DOUBLE);

         System.out.println("Magic square of order " + n.toString());

         /* Create new magic object */
         theMagic = new magic();

         /* Compute magic square and print result */
         result = theMagic.makesqr(1, n);
         System.out.println(result[0]);
      }
      catch (Exception e)
      {
         System.out.println("Exception: " + e.toString());
      }

      finally
      {
         /* Free native resources */
         MWArray.disposeArray(n);
         MWArray.disposeArray(result);
         if (theMagic != null)
            theMagic.dispose();
      }
   }
}

The program does the following:

• Creates an MWNumericArray array to store the input data
• Instantiates a magic object
• Calls the makesqr method, where the first parameter specifies the number of output

arguments and the following parameters are passed to the function in order as input
arguments

• Uses a try-catch block to handle exceptions
• Frees native resources using MWArray methods

5 In MATLAB, navigate to the MagicDemoJavaApp folder.
6 Copy the generated magicsquare.jar package into this folder.

• If you used compiler.build.javaPackage, type:
copyfile(fullfile('..','MagicDemoComp','magicsquarejavaPackage','magicsquare.jar'))

• If you used the Library Compiler, type:

 Integrate Simple MATLAB Function into Java Application

2-3



copyfile(fullfile('..','MagicDemoComp','magicsquare','for_testing','magicsquare.jar'))
7 In a system command window, navigate to the PlotDemoJavaApp folder.
8 Compile the Java application using javac.

• On Windows, execute this command:
javac -classpath "matlabroot\toolbox\javabuilder\jar\javabuilder.jar";.\magicsquare.jar getmagic.java

• On UNIX®, execute this command:
javac -classpath "matlabroot/toolbox/javabuilder/jar/javabuilder.jar":./magicsquare.jar getmagic.java

Replace matlabroot with the path to your MATLAB or MATLAB Runtime installation folder. For
example, on Windows, the path may be C:\Program Files\MATLAB\R2022b.

For more details, see “Compile and Run MATLAB Generated Java Application”.
9 From the system command prompt, run the application.

• On Windows, type:
java -classpath .;"matlabroot\toolbox\javabuilder\jar\javabuilder.jar";.\magicsquare.jar getmagic 5

• On UNIX, type:
java -classpath .:"matlabroot/toolbox/javabuilder/jar/javabuilder.jar":./magicsquare.jar getmagic 5

The application outputs a 5-by-5 magic square in the command window.

    17    24     1     8    15
    23     5     7    14    16
     4     6    13    20    22
    10    12    19    21     3
    11    18    25     2     9

10 To follow up on this example:

• Try running the generated application on a different computer.
• Try building an installer for the package using compiler.package.installer.
• Try integrating a package that consists of multiple functions.

See Also
libraryCompiler | compiler.build.javaPackage | compiler.package.installer | mcc |
deploytool

Related Examples
• “Generate Java Package and Build Java Application”
• “Create Java Application with Multiple MATLAB Functions” on page 5-6
• “Display MATLAB Plot in Java Application” on page 5-2

2 Programming

2-4



How MATLAB Compiler SDK Java Integration Works
In this section...
“MWArray Data Conversion Classes” on page 2-5
“Automatic and Manual Conversion to MATLAB Types” on page 2-5
“Function Signatures Generated by MATLAB Compiler SDK” on page 2-6
“Interaction Between MATLAB Compiler SDK and JVM” on page 2-7

When you create Java packages using MATLAB Compiler SDK, the compiler encrypts your MATLAB
functions and generates one or more Java classes that wrap your MATLAB functions. The classes
provide methods that allow you to call the functions as you would any other Java method.

In addition, the javabuilder package that is provided with MATLAB and MATLAB Runtime contains
the MWArray classes that manage data that passes between Java and MATLAB.

MWArray Data Conversion Classes
When writing your Java application, you can represent your data using objects of any of the MWArray
data conversion classes. Alternatively, you can use standard Java data types and objects.

The MWArray data conversion classes are built as a class hierarchy that represents the major
MATLAB array types.

MWArray Hierarchy

The root of the data conversion class hierarchy is the MWArray abstract class. The MWArray class has
the following subclasses representing the major MATLAB types: MWNumericArray,
MWLogicalArray, MWCharArray, MWCellArray, and MWStructArray. Each subclass stores a
reference to a native MATLAB array of that type.

The MWArray classes provide the following:

• Constructors and finalizers to instantiate and dispose of MATLAB arrays
• get and set methods to read and write the array data
• Methods to identify properties of the array
• Comparison methods to test the equality or order of the array
• Conversion methods to convert to other data types

Note For complete reference information about the MWArray class hierarchy, see
com.mathworks.toolbox.javabuilder.MWArray, which is in the matlabroot/help/toolbox/
javabuilder/MWArrayAPI/ folder.

Automatic and Manual Conversion to MATLAB Types
If your Java code uses a native Java primitive or array as an input parameter, the compiler
automatically converts it to an instance of the appropriate MWArray class before it is passed to the
method. The compiler can convert any Java string, numeric type, or a multidimensional array of these
types to an appropriate MWArray type.

 How MATLAB Compiler SDK Java Integration Works

2-5



In contrast, you can manually convert Java data types to one of the standard MATLAB data types
using the MWArray data conversion classes. When you pass an MWArray instance as an input
argument, the encapsulated MATLAB array is passed directly to the method being called. For more
details and examples, see “Convert Data Between Java and MATLAB” on page 2-26.

For a list of all the data types that are supported along with their equivalent types in MATLAB, see
“Rules for Data Conversion Between Java and MATLAB” on page 9-3 .

Advantage of Using Data Conversion Classes

The MWArray data conversion classes let you pass native type parameters directly without using
explicit data conversion. If you pass the same array frequently, you might improve the performance of
your program by storing the array in an instance of one of the MWArray subclasses.

When you pass an argument only a few times, it is usually just as efficient to pass a primitive Java
type or object, which the calling mechanism automatically converts into an equivalent MATLAB type.

Function Signatures Generated by MATLAB Compiler SDK
The Java programming language supports optional function arguments in the way that MATLAB does
with varargin and varargout. To support this MATLAB feature, the compiler generates a single
overloaded Java method that accommodates any number of input arguments.

MATLAB Function Signatures

A generic MATLAB function has the following structure:

function [Out1, Out2, ..., varargout]=
           foo(In1, In2, ..., varargin)

To the left of the equal sign, the function specifies a set of explicit and optional return arguments.

To the right of the equal sign, the function lists explicit input arguments followed by one or more
optional arguments.

Each argument represents a MATLAB type. When you include the varargin or varargout
argument, you can specify any number of inputs or outputs beyond the ones that are explicitly
declared.

Overloaded Methods in Java That Encapsulate MATLAB Code

When MATLAB Compiler SDK encapsulates your MATLAB code, it creates an overloaded method that
implements the MATLAB functions. This overloaded method corresponds to a call to the generic
MATLAB function for each combination of the possible number and type of input arguments.

In addition to encapsulating input arguments, the compiler creates another method which represents
the output arguments of the MATLAB function. This method of encapsulating the information about
return values resembles the mlx interface generated for the C/C++ MATLAB Compiler SDK target.

These overloaded methods are called the standard interface and the mlx interface. For details, see
“Programming Interfaces Generated by MATLAB Compiler SDK” on page 9-8.

Note When adding fields to data structures and data structure arrays, do so using standard
programming techniques. Do not use the set command as a shortcut.

2 Programming

2-6



Interaction Between MATLAB Compiler SDK and JVM
Packages produced by MATLAB Compiler SDK use Java Native Interface (JNI) to interact with
MATLAB Runtime.

When the first MATLAB Compiler SDK object is instantiated:

1 Dependent MATLAB Compiler SDK classes are loaded.
2 A series of shared libraries forming the JNI bridge from the generated package to MATLAB

Runtime are loaded.
3 MATLAB Runtime is initialized by creating an instance of a C++ class called mcrInstance.
4 The MATLAB-Java interface establishes a connection to the JVM™ by calling the JNI method

AttachCurrentThread.
5 AttachCurrentThread creates a class loader that loads all classes needed by MATLAB code

utilizing the MATLAB-Java interface.
6 The MATLAB Runtime C++ core allocates resources for the arrays created by the Java API.

As you create MWArray objects to interact with MATLAB Runtime, the JVM creates a wrapper object
for the MATLAB mxArray object. The MATLAB Runtime C++ core allocates the actual resources to
store the mxArray object. This has an impact on how the JVM frees up resources used by your
application. Most of the resources used when interacting with MATLAB are created by the MATLAB
Runtime C++ core. The JVM only knows about the MATLAB resources through the JNI wrappers
created for them. Because of this, the JVM does not know the size of the resources being consumed
and cannot effectively manage them using its built in garbage collector. The JVM also does not
manage the threads used by MATLAB Runtime and cannot clean them up.

All of the MATLAB Compiler SDK classes have static methods to properly dispose of their resources.
The disposal methods trigger the freeing of the underlying resources in the MATLAB Runtime C++
core. Not properly disposing of MATLAB Compiler SDK objects can result in unpredictable behavior
and may look like your application has a memory leak.

 How MATLAB Compiler SDK Java Integration Works

2-7



Limitations on Multiple Packages in Single Java Application
In this section...
“Combine Packages with MATLAB Function Handles” on page 2-8
“Combining Packages with Objects” on page 2-10

When developing Java applications that use multiple MATLAB packages, consider that the following
types of data cannot be shared between packages:

• MATLAB function handles
• MATLAB figure handles
• MATLAB objects
• C, Java, and .NET objects
• Executable data stored in cell arrays and structures

To work around these limitations, you can combine multiple Java packages into a single package.

Combine Packages with MATLAB Function Handles
You can pass MATLAB function handles between an application and the MATLAB Runtime instance
from which it originated. However, a MATLAB function handle cannot be passed into a MATLAB
Runtime instance other than the one in which it originated. For example, suppose you had two
MATLAB functions, get_plot_handle and plot_xy, and plot_xy uses the function handle created
by get_plot_handle.

% Saved as get_plot_handle.m
function h = get_plot_handle(lnSpec, lnWidth, mkEdge, mkFace, mkSize)
h = @draw_plot;
    function draw_plot(x, y)
        plot(x, y, lnSpec, ...
            'LineWidth', lnWidth, ...
            'MarkerEdgeColor', mkEdge, ...
            'MarkerFaceColor', mkFace, ...
            'MarkerSize', mkSize)
    end
end

% Saved as plot_xy.m
function plot_xy(x, y, h)
h(x, y);
end

If you compile them into two Java packages, the call to plot_xy would throw an exception.

import com.mathworks.toolbox.javabuilder.*;
import get_plot_handle.*;
import plot_xy.*;

class plottter
{
   public static void main(String[] args)
   {
     MWArray h = null;

2 Programming

2-8



      try
      {
        plotter_handle = new get_plot_handle.Class1();
        plot = new plot_xy.Class1();

        h = plotter_handle.get_plot_handle(1,'--rs',2.0,'k','g',10);
        double[] x = {1,2,3,4,5,6,7,8,9};
        double[] y = {2,6,12,20,30,42,56,72,90};
        plot.plot_xy(x, y, h);
      }
      catch (Exception e)
      {
         System.out.println("Exception: " + e.toString());
      }
      finally
      {
         MWArray.disposeArray(h);
         plot.dispose();
         plotter_handle.dispose();
      }
   }
}

The way to correct the situation is to compile both functions into a single package.

import com.mathworks.toolbox.javabuilder.*;
import plot_functions.*;

class plotter
{
   public static void main(String[] args)
   {
     MWArray h = null;

      try
      {
        plot_funcs = new Class1();

        h = plot_funcs.get_plot_handle(1, '--rs', 2.0, 'k', 'g', 10);
        double[] x = {1,2,3,4,5,6,7,8,9};
        double[] y = {2,6,12,20,30,42,56,72,90};
        plot_funcs.plot_xy(x, y, h);
      }
      catch (Exception e)
      {
         System.out.println("Exception: " + e.toString());
      }
      finally
      {
         MWArray.disposeArray(h);
         plot_funcs.dispose();
      }
   }
}

You could also correct this situation by using a singleton MATLAB Runtime. For more information, see
“Share MATLAB Runtime Instances” on page 9-11.

 Limitations on Multiple Packages in Single Java Application

2-9



Combining Packages with Objects
MATLAB Compiler SDK enables you to return the following types of objects from MATLAB Runtime to
your application code:

• MATLAB
• C++
• .NET
• Java

However, you cannot pass an object created in one MATLAB Runtime instance into a different
MATLAB Runtime instance. This conflict can happen when a function that returns an object and a
function that manipulates that object are compiled into different packages.

For example, you develop two functions. The first creates a bank account for a customer based on
some set of conditions. The second transfers funds between two accounts.

% Saved as account.m
classdef account < handle

    properties
        name
    end
    
    properties (SetAccess = protected)
        balance = 0
        number
    end
    
    methods
        function obj = account(name)
            obj.name = name;
            obj.number = round(rand * 1000);
        end
        
        function deposit(obj, deposit)
            new_bal = obj.balance + deposit;
            obj.balance = new_bal;
        end
        
        function withdraw(obj, withdrawl)
            new_bal = obj.balance - withdrawl;
            obj.balance = new_bal;
        end
        
    end
end

% Saved as open_acct .m
function acct = open_acct(name, open_bal )

    acct = account(name);

    if open_bal > 0
        acct.deposit(open_bal);
    end

2 Programming

2-10



    
end

% Saved as transfer.m
function transfer(source, dest, amount)

    if (source.balance > amount)
        dest.deposit(amount);
        source.withdraw(amount);
    end

end

If you compiled open_acct.m and transfer.m into separate packages, you could not transfer funds
using accounts created with open_acct. The call to transfer throws an exception. One way of
resolving this conflict is to compile both functions into a single package. You could also refactor the
application so that you are not passing MATLAB objects to the functions. You could also use a
singleton MATLAB Runtime.For more information, see “Share MATLAB Runtime Instances” on page
9-11.

See Also

More About
• “Share MATLAB Runtime Instances” on page 9-11

 Limitations on Multiple Packages in Single Java Application

2-11



Error Handling
In this section...
“Error Overview” on page 2-12
“Handle Checked Exceptions” on page 2-12
“Handle Unchecked Exceptions” on page 2-14
“Alternatives to Using System.exit” on page 2-16

Error Overview
Errors that occur during execution of a MATLAB function or during data conversion are signaled by a
standard Java exception. This includes MATLAB run-time errors as well as errors in your MATLAB
code.

Handle Checked Exceptions
Checked exceptions must be declared as thrown by a method using the throws clause. MATLAB
Compiler SDK Java packages support the com.mathworks.toolbox.javabuilder
exception.MWException. This exception class inherits from java.lang.Exception and is thrown
by every MATLAB Compiler SDK generated Java method to signal that an error has occurred during
the call. All normal MATLAB run-time errors, as well as user-created errors (e.g., a calling error in
your MATLAB code) are manifested as MWExceptions.

The Java interface to each MATLAB function declares itself as throwing an MWException using the
throws clause. For example, the myprimes MATLAB function shown previously has the following
interface:

/* mlx interface - List version */
public void myprimes(List lhs, List rhs) throws MWException
{
    (implementation omitted)
}
/* mlx interface - Array version */
public void myprimes(Object[] lhs, Object[] rhs) 
                               throws MWException
{
    (implementation omitted)
 }
/* Standard interface - no inputs*/
public Object[] myprimes(int nargout) throws MWException
   {
      (implementation omitted)
   }
/* Standard interface - one input*/
public Object[] myprimes(int nargout, Object n) 
                                     throws MWException
   {
      (implementation omitted)
   }

Any method that calls myprimes must do one of two things:

2 Programming

2-12



• Catch and handle the MWException.
• Allow the calling program to catch it.

The following two sections provide examples of each.

Handle Exception in Called Function

The getprimes example shown here uses the first of these methods. This method handles the
exception itself and does not need to include a throws clause at the start.

public double[] getprimes(int n)
{
   myclass cls = null;
   Object[] y = null;

   try
   {
      cls = new myclass();
      y = cls.myprimes(1, Double.valueOf((double)n));
      return (double[])((MWArray)y[0]).getData();
   }

   /* Catches the exception thrown by myprimes */
   catch (MWException e)
   {
      System.out.println("Exception: " + e.toString());
      return new double[0];
   }

   finally
   {
      MWArray.disposeArray(y);
      if (cls != null)
         cls.dispose();
   }
}

Note that in this case, it is the programmer's responsibility to return something reasonable from the
method in case of an error.

The finally clause in the example contains code that executes after all other processing in the try
block is executed. This code executes whether or not an exception occurs or a control flow statement
like return or break is executed. It is common practice to include any cleanup code that must
execute before leaving the function in a finally block. The documentation examples use finally
blocks in all the code samples to free native resources that were allocated in the method.

For more information on freeing resources, see “Manage MATLAB Resources in JVM” on page 2-17.

Handle Exception in Calling Function

In this next example, the method that calls myprimes declares that it throws an MWException:

public double[] getprimes(int n) throws MWException
{
   myclass cls = null;
   Object[] y = null;

 Error Handling

2-13



   try
   {
      cls = new myclass();
      y = cls.myprimes(1, Double.valueOf((double)n));
      return (double[])((MWArray)y[0]).getData();
   }

   finally
   {
      MWArray.disposeArray(y);
      if (cls != null)
      cls.dispose();
   }
}

Handle Unchecked Exceptions
Several types of unchecked exceptions can also occur during the course of execution. Unchecked
exceptions are Java exceptions that do not need to be explicitly declared with a throws clause. The
MWArray API classes all throw unchecked exceptions.

All unchecked exceptions thrown by MWArray and its subclasses are subclasses of
java.lang.RuntimeException. The following exceptions can be thrown by MWArray:

• java.lang.RuntimeException
• java.lang.ArrayStoreException
• java.lang.NullPointerException
• java.lang.IndexOutOfBoundsException
• java.lang.NegativeArraySizeException

This list represents the most likely exceptions. Others might be added in the future.

Catching General Exceptions

You can easily rewrite the getprimes example to catch any exception that can occur during the
method call and data conversion. Just change the catch clause to catch a general
java.lang.Exception.

public double[] getprimes(int n)
{
   myclass cls = null;
   Object[] y = null;

   try
   {
      cls = new myclass();
      y = cls.myprimes(1, Double.valueOf((double)n));
      return (double[])((MWArray)y[0]).getData();
   }

   /* Catches the exception thrown by anyone */
   catch (Exception e)
   {
      System.out.println("Exception: " + e.toString());
      return new double[0];

2 Programming

2-14



   }

   finally
   {
      MWArray.disposeArray(y);
      if (cls != null)
         cls.dispose();
   }
}

Catching Multiple Exception Types

This second, and more general, variant of this example differentiates between an exception generated
in a compiled method call and all other exception types by introducing two catch clauses as follows:

public double[] getprimes(int n)
{
   myclass cls = null;
   Object[] y = null;

   try
   {
      cls = new myclass();
      y = cls.myprimes(1, Double.valueOf((double)n));
      return (double[])((MWArray)y[0]).getData();
   }

   /* Catches the exception thrown by myprimes */
   catch (MWException e)
   {
      System.out.println("Exception in MATLAB call: " +
         e.toString());
      return new double[0];
   }

   /* Catches all other exceptions */
   catch (Exception e)
   {
      System.out.println("Exception: " + e.toString());
      return new double[0];
   }

   finally
   {
      MWArray.disposeArray(y);
      if (cls != null)
         cls.dispose();
   }
}

The order of the catch clauses here is important. Because MWException is a subclass of
Exception, the catch clause for MWException must occur before the catch clause for
Exception. If the order is reversed, the MWException catch clause never executes.

 Error Handling

2-15



Alternatives to Using System.exit
Any Java application that uses a class generated using MATLAB Compiler SDK should avoid any
direct or indirect calls to System.exit.

Any direct or indirect call to System.exit will result in the JVM shutting down in an abnormal
fashion. This may result in system deadlocks.

Using System.exit also causes the java process to exit unpredictably.

Java programs using Swing components are most likely to invoke System.exit. Here are a few ways
to avoid it:

• Use public interface WindowConstants.DISPOSE_ON_CLOSE method as an alternative to
WindowConstants.EXIT_ON_CLOSE as input to the JFrame class
setDefaultCloseOperation method.

• If you want to provide an Exit button in your GUI that terminates your application, instead of
calling System.exit in the ActionListener for the button, call the dispose method on
JFrame.

2 Programming

2-16



Manage MATLAB Resources in JVM
In this section...
“Name MATLAB Objects for Resource Maintenance” on page 2-17
“Release Resources of MATLAB Objects” on page 2-18

MATLAB Compiler SDK uses a Java Native Interface (JNI) wrapper connecting your Java application
to the C++ MATLAB Runtime. As a result, most of the resources consumed by the MATLAB Compiler
SDK portions of your Java application are created by MATLAB Runtime. Resources created by
MATLAB Runtime are not visible to the JVM. The JVM garbage collector cannot effectively manage
resources that it cannot see.

All of the MATLAB Compiler SDK Java classes have hooks that free MATLAB resources when the JVM
garbage collector collects the wrapper objects. However, JVM garbage collection is unreliable
because the JVM sees only the small wrapper object. The garbage collector can forgo spending CPU
cycles to delete the small wrapper object. Until the Java wrapper object is deleted, the resources
allocated in MATLAB Runtime are also not deleted. This behavior can result in conditions that look
like memory leaks and rapidly consume resources.

To avoid this situation:

• Never create anonymous MATLAB objects.
• Always dispose of MATLAB objects using their dispose() method.

For information about the interaction between the interface for MATLAB and Java and the JVM, see
“Interaction Between MATLAB Compiler SDK and JVM” on page 2-7.

Name MATLAB Objects for Resource Maintenance
All of the MATLAB objects supported by MATLAB Compiler SDK have standard Java constructors as
described in the Java API documentation in matlabroot/help/toolbox/javabuilder/
MWArrayAPI.

When creating MATLAB objects, always assign them names. For example, create a 5-by-5 cell array.

MWCellArray myCA = new MWCellArray(5, 5);

The Java object myCA is a wrapper that points to a 5-by-5 mxCellArray object in MATLAB Runtime.
myCA can be added to other MATLAB arrays or manipulated in your Java application. When you are
finished with myCA, you can clean up the 5-by-5 mxCellArray by using the object’s dispose()
method.

The semantics of the API allows you create anonymous MATLAB objects and store them in named
MATLAB objects, but you should never do this in practice. You have no way to manage the MATLAB
resources created by the anonymous MATLAB object.

Consider the following code that creates a MATLAB array, data, and populates it with an anonymous
MATLAB object:

MWStructArray data = new MWStructArray(1, KMAX, FIELDS);
data.set(FIELDS[0], k + 1, new MWNumericArray(k * 1.13));

 Manage MATLAB Resources in JVM

2-17



Two MATLAB objects are created. Both objects have a Java wrapper and a MATLAB array object in
MATLAB Runtime. When you dispose of data, all of the resources for it are cleaned up. However, the
anonymous object created by new MWNumericArray(k * 1.13) is just marked for deletion by the
JVM. Because the Java wrapper consumes a tiny amount of space, the garbage collector is likely to
leave it around. Since the JVM never cleans up the wrapper object, MATLAB Runtime never cleans up
the resources it has allocated.

Now consider the following code, where the MATLAB object’s set() methods accept native Java
types:

MWStructArray data = new MWStructArray(1, KMAX, FIELDS);
data.set(FIELDS[0], k + 1, k * 1.13);

In this instance, only one MATLAB object is created. When its dispose() method is called, all of the
resources are cleaned up.

Release Resources of MATLAB Objects
Clean up MATLAB objects by using the:

• Object’s dispose() method
• Static MWArray.disposeArray() method

Both methods release all of the resources associated with the MATLAB object. The Java wrapper
object is deleted. If there are no other references to the MATLAB Runtime mxArray object, it is also
deleted.

The following code disposes of a MATLAB object using its dispose() method.

MWCellArray myCA = new MWCellArray(5, 5);
...
myCA.dispose();

The following code disposes of a MATLAB object using the MWArray.disposeArray() method.

MWCellArray myCA = new MWCellArray(5, 5);
...
MWArray.disposeArray(myCA);

See Also

Related Examples
• “How MATLAB Compiler SDK Java Integration Works” on page 2-5
• “Interaction Between MATLAB Compiler SDK and JVM” on page 2-7
• “Convert Data Between Java and MATLAB” on page 2-26

2 Programming

2-18



Interaction Between MATLAB Compiler SDK and JVM
Packages produced by MATLAB Compiler SDK use Java Native Interface (JNI) to interact with
MATLAB Runtime.

When the first MATLAB Compiler SDK object is instantiated:

1 Dependent MATLAB Compiler SDK classes are loaded.
2 A series of shared libraries forming the JNI bridge from the generated package to MATLAB

Runtime are loaded.
3 MATLAB Runtime is initialized by creating an instance of a C++ class called mcrInstance.
4 The MATLAB-Java interface establishes a connection to the JVM by calling the JNI method

AttachCurrentThread.
5 AttachCurrentThread creates a class loader that loads all classes needed by MATLAB code

utilizing the MATLAB-Java interface.
6 The MATLAB Runtime C++ core allocates resources for the arrays created by the Java API.

As you create MWArray objects to interact with MATLAB Runtime, the JVM creates a wrapper object
for the MATLAB mxArray object. The MATLAB Runtime C++ core allocates the actual resources to
store the mxArray object. This has an impact on how the JVM frees up resources used by your
application. Most of the resources used when interacting with MATLAB are created by the MATLAB
Runtime C++ core. The JVM only knows about the MATLAB resources through the JNI wrappers
created for them. Because of this, the JVM does not know the size of the resources being consumed
and cannot effectively manage them using its built in garbage collector. The JVM also does not
manage the threads used by MATLAB Runtime and cannot clean them up.

All of the MATLAB Compiler SDK classes have static methods to properly dispose of their resources.
The disposal methods trigger the freeing of the underlying resources in the MATLAB Runtime C++
core. Not properly disposing of MATLAB Compiler SDK objects can result in unpredictable behavior
and may look like your application has a memory leak.

 Interaction Between MATLAB Compiler SDK and JVM

2-19



Specify Parallel Computing Toolbox Profile in Java Application
This example shows how to use the MATLAB Runtime User Data Interface to specify the profile of a
Parallel Computing Toolbox cluster in a Java application.

For more details, see “Using MATLAB Runtime User Data Interface”.

Step 1: Write Parallel Computing Toolbox Code
1 Create sample_pct.m in MATLAB.

This example code uses the cluster defined in the default profile for Parallel Computing Toolbox.

function speedup = sample_pct (n)
warning off all;
tic
if(ischar(n))
    n=str2double(n);
end
for ii = 1:n
   (cov(sin(magic(n)+rand(n,n))));
end
time1 =toc;
parpool;
tic
parfor ii = 1:n
   (cov(sin(magic(n)+rand(n,n))));
end
time2 =toc;
disp(['Normal loop time: ' num2str(time1) ...
    ', parallel loop time: ' num2str(time2) ]);
disp(['parallel speedup: ' num2str(1/(time2/time1)) ...
    ' times faster than normal']);
delete(gcp);
disp('done');
speedup = (time1/time2);

2 Run the function with the input 400.

a = sample_pct(400)
3 The following is an example of the output, assuming the default profile is set to local:

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).
Normal loop time: 2.5651, parallel loop time: 1.6371
parallel speedup: 1.5668 times faster than normal
Parallel pool using the 'local' profile is shutting down.
done

ans =

    1.5668

2 Programming

2-20



Step 2: Set Parallel Computing Toolbox Profile
To access the MATLAB Runtime User Data interface using a Java package built with MATLAB
Compiler SDK, you must set mcruserdata directly from MATLAB. There is no Java API to access
mcruserdata as there is for C and C++ applications built with MATLAB Compiler SDK.

To set the mcruserdata from MATLAB, create an init function. This separate MATLAB function
uses setmcruserdata to set the Parallel Computing Toolbox profile once. You then call your other
functions to utilize the Parallel Computing Toolbox.

Create the following init_sample_pct function:

function init_sample_pct
% Set the Parallel Computing Toolbox Profile:
if(isdeployed)
    % Let the USER select the cluster profile.
    [profile, profpath] = uigetfile('*.mlsettings'); 
    setmcruserdata('ParallelProfile', fullfile(profpath, profile));
end

To export an existing profile to an .mlsettings file, use the parallel.exportProfile function.
For example,

parallel.exportProfile('local','mylocalsettings');

Tip If you need to change your profile in the application, use parallel.importProfile and
parallel.defaultClusterProfile. For more information, see “Discover Clusters and Use
Cluster Profiles” (Parallel Computing Toolbox).

Step 3: Compile Your Code into Java Package
Build the Java package with the Library Compiler app or compiler.build.javaPackage.

Use the following information for your project:

Package Name parallelComponent
Class Name PctClass
Files to Compile sample_pct.m and init_pct_sample.m

For example, if you are using compiler.build.javaPackage, type:
buildResults = compiler.build.javaPackage( ...
{'sample_pct.m','init_sample_pct.m'}, ...
'PackageName','parallelComponent','ClassName','PctClass');

For more details, see the instructions in “Generate Java Package and Build Java Application”.

Note If you are using the GPU feature of Parallel Computing Toolbox, you must manually add the
PTX and CU files.

• If you are using the Library Compiler app, click Add files/directories on the Build tab.
• If you are using a compiler.build function, use the AdditionalFiles option.

 Specify Parallel Computing Toolbox Profile in Java Application

2-21



• If you are using the mcc command, use the -a option.

Step 4: Write Java Application
Write source code for a Java application that accesses the MATLAB functions. Save this code as
JavaParallelClass.java in the folder that contains the generated parallelComponent.jar
package.

A sample application for this example is provided below.

import com.mathworks.toolbox.javabuilder.*;
import parallelComponent.*;
 
public class JavaParallelClass 
{
    public static void main(String[] args) 
    {
         MWArray A = null;
         PctClass C = null;
         Object[] B = null;
         try
         {
             C = new PctClass();
             /* Set up the runtime with Parallel Data */
             C.init_sample_pct();
             A = new MWNumericArray(400);
             B = C.sample_pct(1, A);
             System.out.println("The speed up was: " + B[0]);
         }
         catch (Exception e)
         {
             System.out.println("The error is " + e.toString());
         }
         finally
         {
             MWArray.disposeArray(A);
             C.dispose();
         }
    }
}

Compile and Run Application
Compile your Java application using an IDE or at the command prompt.

• On Windows, execute the following command:

javac -classpath "matlabroot\toolbox\javabuilder\jar\javabuilder.jar";.\parallelComponent.jar JavaParallelClass.java

• On UNIX, execute the following command:

javac -classpath "matlabroot/toolbox/javabuilder/jar/javabuilder.jar":./parallelComponent.jar JavaParallelClass.java

Replace matlabroot with the path to your MATLAB or MATLAB Runtime installation folder. For
example, on Windows, the default path is C:\Program Files\MATLAB\R2022b.

2 Programming

2-22



Run the JavaParallelClass application.

• On Windows, execute the following command:

java -classpath .;"matlabroot\toolbox\javabuilder\jar\javabuilder.jar";.\parallelComponent.jar JavaParallelClass
• On UNIX, execute the following command:

java -classpath .:"matlabroot/toolbox/javabuilder/jar/javabuilder.jar":./parallelComponent.jar JavaParallelClass

Note If you are running the application on the Mac 64-bit platform, you must add the -d64 flag in
the java command.

The JavaParallelClass application prompts you to select the cluster profile to use. After you
select the .mlsettings file, the application displays output similar to the following:
Starting parallel pool (parpool) using the 'local_mcruserdata' profile ...
Connected to the parallel pool (number of workers: 6).
Normal loop time: 2.428, parallel loop time: 1.6515
parallel speedup: 1.4701 times faster than normal
Parallel pool using the 'local_mcruserdata' profile is shutting down.
done
The speed up was: 1.4701

See Also
getmcruserdata | setmcruserdata

More About
• “Using MATLAB Runtime User Data Interface”

 Specify Parallel Computing Toolbox Profile in Java Application

2-23



Dynamically Specify Options to MATLAB Runtime
In this section...
“What Options Can You Specify?” on page 2-24
“Sett and Retrieve MATLAB Runtime Option Values Using MWApplication” on page 2-24

What Options Can You Specify?
You can pass MATLAB Runtime options -nojvm, -nodisplay, and -logfile to MATLAB Compiler
SDK from the client application using two classes in javabuilder.jar:

• MWApplication
• MWMCROption

Sett and Retrieve MATLAB Runtime Option Values Using
MWApplication
The MWApplication class provides several static methods to set MATLAB Runtime option values and
also to retrieve them. The following table lists static methods supported by this class.

MWApplication Static Methods Purpose
MWApplication.initialize(MWMCROption... options); Passes MATLAB Runtime run-time

options (see “Specifying Run-Time
Options Using MWMCROption” on
page 2-24)

MWApplication.isMCRInitialized(); Returns true if MATLAB Runtime is
initialized; otherwise returns false

MWApplication.isMCRJVMEnabled(); Returns true if MATLAB Runtime is
launched with JVM; otherwise returns
false

MWApplication.isMCRNoDisplaySet(); Returns true if
MWMCROption.NODISPLAY is used in
MWApplication.initialize

Note false is always returned on
Windows systems since the -
nodisplay option is not supported on
Windows systems.

MWApplication.getMCRLogfileName(); Retrieves the name of the log file

Specifying Run-Time Options Using MWMCROption

MWApplication.initialize takes zero or more MWMCROptions.

Calling MWApplication.initialize() without any inputs launches MATLAB Runtime with the
following default values.

You must call MWApplication.initialize() before performing any other processing.

2 Programming

2-24



These options are all write-once, read-only properties.

MATLAB Runtime Run-Time Option Default Values
-nojvm false
-logfile null
-nodisplay false

Note If there are no MATLAB Runtime options being passed, you do not need to use
MWApplication.initialize since initializing a generated class initializes MATLAB Runtime with
default options.

Use the following static members of MWMCROption to represent the MATLAB Runtime options you
want to modify.

MWMCROption Static
Members

Purpose

MWMCROption.NOJVM Launches MATLAB Runtime without a JVM. When this option is
used, the JVM launched by the client application is unaffected. The
value of this option determines whether or not the MATLAB
Runtime should attach itself to the JVM launched by the client
application.

MWMCROption.NODISPLAY Launches MATLAB Runtime without display functionality.
MWMCROption.logFile("logf
ile.dat")

Allows you to specify a log file name (must be passed with a log file
name).

Pass and Retrieve MATLAB Runtime Option Values from Java Application

Following is an example of how MATLAB Runtime option values are passed and retrieved from a
client-side Java application:

MWApplication.initialize(MWMCROption.NOJVM,
   MWMCROption.logFile("logfile.dat"),MWMCROption.NODISPLAY);
System.out.println(MWApplication.getMCRLogfileName());
System.out.println(MWApplication.isMCRInitialized());
System.out.println(MWApplication.isMCRJVMEnabled());
System.out.println(MWApplication.isMCRNoDisplaySet()); //UNIX

myclass cls = new myclass();
cls.hello();

 Dynamically Specify Options to MATLAB Runtime

2-25



Convert Data Between Java and MATLAB
In this section...
“Automatic Conversion to MATLAB Types” on page 2-26
“Manual Conversion of Data Types” on page 2-27
“Handle Return Values Of Unknown Type” on page 2-31
“Pass Java Objects by Reference” on page 2-34

When you invoke a MATLAB method from a generated class in your Java application, the input
arguments received by the method must be in the MATLAB internal array format. You can either use
manual conversion within the calling program by using instances of the MWArray classes, or rely on
automatic conversion by storing your data using Java classes and data types, which are then
automatically converted by the calling mechanism. Most likely, you will use a combination of manual
and automatic conversion.

For example, consider the following Java statement:

result = theFourier.plotfft(3, data, Double.valueOf(interval));

The third argument is of type java.lang.Double, which is converted to a MATLAB 1-by-1 double
array.

Automatic Conversion to MATLAB Types
The call signature for a method that encapsulates a MATLAB function uses one of the MATLAB data
conversion classes to pass input and output arguments. When you call any such method, all input
arguments not derived from one of the MWArray classes are automatically converted by the compiler
to the correct MWArray type before being passed to the MATLAB method.

For tables showing each Java type along with its converted MATLAB type, and each MATLAB type
with its converted Java type, see “Rules for Data Conversion Between Java and MATLAB” on page 9-
3.

Use MWNumericArray

The getmagic program (“Integrate Simple MATLAB Function into Java Application” on page 2-2)
converts a java.lang.Double argument to an MWNumericArray type that can be used by the
MATLAB function without further conversion:

n = new MWNumericArray(Double.valueOf(args[0]), MWClassID.DOUBLE);
theMagic = new Class1();
result = theMagic.makesqr(1, n);

Pass Java Double Object

This example calls the myprimes method with two arguments. The first specifies the number of
arguments to return. The second is an object of class java.lang.Double that passes the single data
input to myprimes.

cls = new myclass();
y = cls.myprimes(1, Double.valueOf((double)n));

The compiler converts the java.lang.Double argument to a MATLAB 1-by-1 double array.

2 Programming

2-26



Pass MWArray

This example constructs an MWNumericArray of type MWClassID.DOUBLE. The call to myprimes
passes the number of outputs, 1, and the MWNumericArray, x.

x = new MWNumericArray(n, MWClassID.DOUBLE);
cls = new myclass();
y = cls.myprimes(1, x);

The compiler converts the MWNumericArray object x to a MATLAB scalar double and passes it to
the MATLAB function.

Call MWArray Methods

The conversion rules apply not only when calling your own methods, but also when calling
constructors and factory methods belonging to the MWArray classes.

For example, the following code fragment calls the constructor for the MWNumericArray class with a
Java double as the input argument:

double Adata = 24;
MWNumericArray A = new MWnumericArray(Adata);
System.out.println("Array A is of type " + A.classID());

Array A is of type double

The compiler converts the input argument to an instance of MWNumericArray with a ClassID
property of MWClassID.DOUBLE. This MWNumericArray object is the equivalent of a MATLAB 1-by-1
double array.

Return Data from MATLAB to Java

All data returned from a method coded in MATLAB is passed as an instance of the appropriate
MWArray subclass. For example, a MATLAB cell array is returned to the Java application as an
MWCellArray object.

Return data is not converted to a Java type. If you choose to use a Java type, you must convert to that
type using the toArray method of the MWArray subclass to which the return data belongs. For more
details, see “Use toTypeArray Methods to Specify Type and Dimensionality” on page 2-34.

Note For information on how to work directly with cell arrays and data structures in native Java, see
“Represent Native Java Cell and Struct Arrays” on page 7-7.

Manual Conversion of Data Types
To manually convert to one of the standard MATLAB data types, use the MWArray data conversion
classes provided by MATLAB Compiler SDK. For class reference and usage information, see the
com.mathworks.toolbox.javabuilder package.

Change Default by Specifying Type

When calling an MWArray class method constructor, supplying a specific data type causes MATLAB
Compiler SDK to convert to that type instead of the default.

 Convert Data Between Java and MATLAB

2-27



For example, in the following code fragment, the code specifies that A should be constructed as a
MATLAB 1-by-1 16-bit integer array:

double Adata = 24;
MWNumericArray A = new MWnumericArray(Adata, MWClassID.INT16);
System.out.println("Array A is of type " + A.classID());

Array A is of type int16

Pass Variable Numbers of Inputs

Consider the following MATLAB function that returns the sum of the inputs:

function y = mysum(varargin)
y = sum([varargin{:}]);

The inputs are provided as a varargin argument, which means that the caller can specify any
number of inputs to the function. The result is returned as a scalar double.

MATLAB Compiler SDK generates the following Java interface to this function:

/* mlx interface - List version*/
public void mysum(List lhs, List rhs)
                          throws MWException
{
   (implementation omitted)
}
/* mlx interface - Array version*/
public void mysum(Object[] lhs, Object[] rhs)
                          throws MWException
{
   (implementation omitted)
}

/* standard interface - no inputs */
public Object[] mysum(int nargout) throws MWException
{
   (implementation omitted)
}

/* standard interface - variable inputs */
public Object[] mysum(int nargout, Object varargin)
                          throws MWException
{
   (implementation omitted)
}

In all cases, the varargin argument is passed as type Object, which lets you provide any number of
inputs in the form of an array of Object (Object[]). The contents of this array are passed to the
compiled MATLAB function in the order in which they appear in the array.

Here is an example of how you might use the mysum method in a Java program:

public double getsum(double[] vals) throws MWException
{
   myclass cls = null;
   Object[] x = {vals};
   Object[] y = null;

2 Programming

2-28



   try
   {
      cls = new myclass();
      y = cls.mysum(1, x);
      return ((MWNumericArray)y[0]).getDouble(1);
   }

   finally
   {
      MWArray.disposeArray(y);
      if (cls != null)
          cls.dispose();
   }
}

In this example, you create an Object array of length 1 and initialize it with a reference to the
supplied double array. This argument is passed to the mysum method. The result is known to be a
scalar double, so the code returns this double value with the statement:

return ((MWNumericArray)y[0]).getDouble(1);

Cast the return value to MWNumericArray and invoke the getDouble(int) method to return the
first element in the array as a primitive double value.

Pass Array Inputs

This more general version of getsum takes an array of Object as input and converts each value to a
double array. The list of double arrays is then passed to the mysum function, where it calculates the
total sum of each input array.

public double getsum(Object[] vals) throws MWException
{
   myclass cls = null;
   Object[] x = null;
   Object[] y = null;

   try
   {
      x = new Object[vals.length];
      for (int i = 0; i < vals.length; i++)
         x[i] = new MWNumericArray(vals[i], MWClassID.DOUBLE);

      cls = new myclass();
      y = cls.mysum(1, x);
      return ((MWNumericArray)y[0]).getDouble(1);
   }
   finally
   {
      MWArray.disposeArray(x);
      MWArray.disposeArray(y);
      if (cls != null)
         cls.dispose();
   }
}

 Convert Data Between Java and MATLAB

2-29



Pass Variable Number of Outputs

varargout arguments are handled in the same way that varargin arguments are handled.
Consider the following MATLAB function:

function varargout = randvectors

for i=1:nargout
   varargout{i} = rand(1, i);
end

This function returns a list of random double vectors such that the length of the ith vector is equal
to i. MATLAB Compiler SDK generates the following Java interface to this function:

/* mlx interface - List version */
 public void randvectors(List lhs, List rhs) throws MWException
{
   (implementation omitted)
}
/* mlx interface - Array version */
public void randvectors(Object[] lhs, 
           Object[] rhs) throws MWException
{
   (implementation omitted)
}
/* Standard interface - no inputs*/
public Object[] randvectors(int nargout) throws MWException
{
   (implementation omitted)
}

Pass Optional Arguments with Standard Interface

Here is one way to use the randvectors method in a Java program:

getrandvectors.java

public double[][] getrandvectors(int n) throws MWException
{
   myclass cls = null;
   Object[] y = null;

   try
   {
      cls = new myclass();
      y = cls.randvectors(n);
      double[][] ret = new double[y.length][];

      for (int i = 0; i < y.length; i++)
         ret[i] = (double[])((MWArray)y[i]).getData();
      return ret;
   }

   finally
   {
      MWArray.disposeArray(y);
      if (cls != null)
         cls.dispose();

2 Programming

2-30



   }
}

The getrandvectors method returns a two-dimensional double array with a triangular structure.
The length of the ith row equals i. Such arrays are commonly referred to as jagged arrays. Jagged
arrays are easily supported in Java because a Java matrix is just an array of arrays.

Handle Return Values Of Unknown Type
The previous examples used the fact that you knew the type and dimensionality of the output
argument. Sometimes, in MATLAB programming, this information is unknown or can vary. In this
case, the code that calls the method might need to query the type and dimensionality of the output
arguments.

There are several ways to do this:

• Use reflection support in the Java language to query any object for its type.
• Use several methods provided by the MWArray class to query information about the underlying

MATLAB array.
• Specify type using the toTypeArray methods.

Use Java Reflection to Determine Type and Dimensionality

This example uses the toArray method to return a Java primitive array representing the underlying
MATLAB array. The toArray method works just like getData in the previous examples, except that
the returned array has the same dimensionality as the underlying MATLAB array.

The code calls the myprimes method and determines the type using reflection. The example assumes
that the output is returned as a numeric matrix, but the exact numeric type is unknown.

getprimes.java Using Reflection

public void getprimes(int n) throws MWException
{
   myclass cls = null;
   Object[] y = null;

   try
   {
      cls = new myclass();
      y = cls.myprimes(1, Double.valueOf((double)n));
      Object a = ((MWArray)y[0]).toArray();

      if (a instanceof double[][])
      {
         double[][] x = (double[][])a;

         /* (do something with x...) */
      }

      else if (a instanceof float[][])
      {
         float[][] x = (float[][])a;

         /* (do something with x...) */

 Convert Data Between Java and MATLAB

2-31



      }

      else if (a instanceof int[][])
      {
         int[][] x = (int[][])a;

         /* (do something with x...) */
      }

      else if (a instanceof long[][])
      {
         long[][] x = (long[][])a;

         /* (do something with x...) */
      }

      else if (a instanceof short[][])
      {
         short[][] x = (short[][])a;

         /* (do something with x...) */
      }

      else if (a instanceof byte[][])
      {
         byte[][] x = (byte[][])a;

         /* (do something with x...) */
      }

      else
      {
         throw new MWException(
            "Bad type returned from myprimes");
      }
   }

Use MWArray Query to Determine Type and Dimensionality

The next example uses the MWArray classID method to determine the type of the underlying
MATLAB array. It also checks the dimensionality by calling numberOfDimensions. If any unexpected
information is returned, an exception is thrown. It then checks the MWClassID and processes the
array accordingly.

getprimes.java Using classID
public void getprimes(int n) throws MWException
{
   myclass cls = null;
   Object[] y = null;

   try
   {
      cls = new myclass();
      y = cls.myprimes(1, Double.valueOf((double)n));
      MWClassID clsid = ((MWArray)y[0]).classID();

      if (!clsid.isNumeric() ||

2 Programming

2-32



         ((MWArray)y[0]).numberOfDimensions() != 2)
      {
         throw new MWException("Bad type 
                          returned from myprimes");
      }

      if (clsid == MWClassID.DOUBLE)
      {
         double[][] x = (double[][])((MWArray)y[0]).toArray();

         /* (do something with x...) */
      }

      else if (clsid == MWClassID.SINGLE)
      {
         float[][] x = (float[][])((MWArray)y[0]).toArray();

         /* (do something with x...) */
      }

      else if (clsid == MWClassID.INT32 || 
              clsid == MWClassID.UINT32)
      {
         int[][] x = (int[][])((MWArray)y[0]).toArray();

         /* (do something with x...) */
      }

      else if (clsid == MWClassID.INT64 || 
              clsid == MWClassID.UINT64)
      {
         long[][] x = (long[][])((MWArray)y[0]).toArray();

         /* (do something with x...) */
      }

      else if (clsid == MWClassID.INT16 || 
              clsid == MWClassID.UINT16)
      {
         short[][] x = (short[][])((MWArray)y[0]).toArray();

         /* (do something with x...) */
      }

      else if (clsid == MWClassID.INT8 || 
              clsid == MWClassID.UINT8)
      {
         byte[][] x = (byte[][])((MWArray)y[0]).toArray();

         /* (do something with x...) */
      }
   }
   finally
   {
      MWArray.disposeArray(y);
      if (cls != null)
         cls.dispose();

 Convert Data Between Java and MATLAB

2-33



   }
}

Use toTypeArray Methods to Specify Type and Dimensionality

The next example demonstrates how you can coerce or force data to a specified numeric type by
invoking any of the toTypeArray methods. These methods return an array of Java elements of the
type specified in the name of the called method. The data is coerced or forced to the primitive type
specified in the method name. Note that when using these methods, data will be truncated when
needed to allow conformance to the specified data type.

Specify Type Using toTypeArray Method

Object results = null;
try {
    // call a compiled MATLAB function
    results = myobject.myfunction(2);

    // first output is known to be a numeric matrix
    MWArray resultA = (MWNumericArray) results[0];
   double[][] a = (double[][]) resultA.toDoubleArray();

    // second output is known to be 
    //    a 3-dimensional numeric array
    MWArray resultB = (MWNumericArray) results[1];
   int[][][] b = (int[][][]) resultB.toIntArray();   
}
 finally {
    MWArray.disposeArray(results);
}

Pass Java Objects by Reference
You can create a MATLAB code wrapper around Java objects using MWJavaObjectRef, a special
subclass of MWArray. Using this technique, you can pass objects by reference to MATLAB functions,
clone a Java object inside a generated package, as well as perform other object marshaling specific to
MATLAB Compiler SDK. The examples in this section present some common use cases.

Pass Java Object into MATLAB Compiler SDK Java Method

To pass an object into a MATLAB Compiler SDK Java method:

1 Use MWJavaObjectRef to wrap your object.
2 Pass your object to a MATLAB function.

For example:
/* Create an object */
java.util.Hashtable<String,Integer> hash = 
                  new java.util.Hashtable<String,Integer>();
hash.put("One", 1);
hash.put("Two", 2);
System.out.println("hash: ");
System.out.println(hash.toString());
            
/* Create a MWJavaObjectRef to wrap this object */
origRef = new MWJavaObjectRef(hash);
            

2 Programming

2-34



/* Pass it to a MATLAB function that lists its methods, etc */
result = theComponent.displayObj(1, origRef);            
MWArray.disposeArray(origRef);

Clone an Object

You can also use MWJavaObjectRef to clone an object by doing the following:

1 Add to the original hash.
2 Clone the object.
3 (Optional) Continue to add items to each copy.

For example:
origRef = new MWJavaObjectRef(hash);            
System.out.println("hash:");
System.out.println(hash.toString());
result = theComponent.addToHash(1, origRef);
            
outputRef = (MWJavaObjectRef)result[0];
            
/* We can typecheck that the reference contains a      */
/*        Hashtable but not <String,Integer>;          */
/* this can cause issues if we get a Hashtable<wrong,wrong>. */
java.util.Hashtable<String, Integer> outHash = 
          (java.util.Hashtable<String,Integer>)(outputRef.get());
            
/* We've added items to the original hash, cloned it, */
/* then added items to each copy */
System.out.println("hash:");
System.out.println(hash.toString());
System.out.println("outHash:");
System.out.println(outHash.toString());

addToHash.m
function h2 = addToHash(h)

% Validate input
if ~isa(h,'java.util.Hashtable')
    error('addToHash:IncorrectType', ...
        'addToHash expects a java.util.Hashtable');
end

% Add an item
h.put('From MATLAB',12);
% Clone the Hashtable and add items to both resulting objects
h2 = h.clone();
h.put('Orig',20);
h2.put('Clone',21);

Pass Date into Method and Get Date from Method

In addition to passing in created objects, you can also use MWJavaObjectRef to pass utility objects
such as java.util.date.

1 Get the current date and time using the Java object java.util.date.
2 Create an instance of MWJavaObjectRef in which to wrap the Java object.
3 Pass it to a MATLAB function that performs further processing, such as nextWeek.m.

For example:
/* Get the current date and time */
java.util.Date nowDate = new java.util.Date();
System.out.println("nowDate:");

 Convert Data Between Java and MATLAB

2-35



System.out.println(nowDate.toString());
            
/* Create a MWJavaObjectRef to wrap this object */
origRef = new MWJavaObjectRef(nowDate);
            
/* Pass it to a MATLAB function that calculates one week */
/* in the future */
result = theComponent.nextWeek(1, origRef);
            
outputRef = (MWJavaObjectRef)result[0];
java.util.Date nextWeekDate = 
      (java.util.Date)outputRef.get();
System.out.println("nextWeekDate:");
System.out.println(nextWeekDate.toString());

nextWeek.m
function nextWeekDate = nextWeek(nowDate)

% Validate input
if ~isa(nowDate,'java.util.Date')
    error('nextWeekDate:IncorrectType', ...
        'nextWeekDate expects a java.util.Date');
end

% Use java.util.Calendar to calculate one week later 
% than the supplied 
% java.util.Date
cal = java.util.Calendar.getInstance();
cal.setTime(nowDate);
cal.add(java.util.Calendar.DAY_OF_MONTH, 7);
nextWeekDate = cal.getTime();

Return Java Objects Using unwrapJavaObjectRefs

If you want actual Java objects returned from a method, use unwrapJavaObjectRefs. This method
recursively connects a single MWJavaObjectRef or a multidimensional array of MWJavaObjectRef
objects to a reference or array of references.

The following code fragments show two examples of calling unwrapJavaObjectRefs:

Return Single Reference or Reference to Array of Objects Using unwrapJavaObjectRefs

Hashtable<String,Integer> myHash = new Hashtable<String,Integer>();
myHash.put("a", new Integer(3));
myHash.put("b", new Integer(5));
MWJavaObjectRef A = new MWJavaObjectRef(new Integer(12));
System.out.println("A referenced the object: "
    + MWJavaObjectRef.unwrapJavaObjectRefs(A));
      
MWJavaObjectRef B = new MWJavaObjectRef(myHash);
Object bObj = (Object)B;
System.out.println("B referenced the object: "
    + MWJavaObjectRef.unwrapJavaObjectRefs(bObj))

This code produces the following output:

A referenced the object: 12
B referenced the object: {b=5, a=3}

Return Array of References Using unwrapJavaObjectRefs

MWJavaObjectRef A = new MWJavaObjectRef(new Integer(12));
MWJavaObjectRef B = new MWJavaObjectRef(new Integer(104));

2 Programming

2-36



Object[] refArr = new Object[2];
refArr[0] = A;
refArr[1] = B;
Object[] objArr = 
    MWJavaObjectRef.unwrapJavaObjectRefs(refArr);
System.out.println("refArr referenced the objects: " +
    objArr[0] + " and " + objArr[1]);

This code produces the following output:

refArr referenced the objects: 12 and 104

Optimization Example Using MWJavaObjectRef

For a full example of how to use MWJavaObjectRef to create a reference to a Java object and pass it
to a method, see “Pass Java Objects to MATLAB” on page 5-22.

See Also
varargin | varargout

Related Examples
• “How MATLAB Compiler SDK Java Integration Works” on page 2-5
• “Programming Interfaces Generated by MATLAB Compiler SDK” on page 9-8
• “Rules for Data Conversion Between Java and MATLAB” on page 9-3
• “Manage MATLAB Resources in JVM” on page 2-17

 Convert Data Between Java and MATLAB

2-37



Set Java Properties
In this section...
“Set Java System Properties” on page 2-38
“Ensure a Consistent GUI Appearance” on page 2-38

Set Java System Properties
Set Java system properties in one of two ways:

• In the Java statement. Use the syntax: java -Dpropertyname=value, where propertyname is
the name of the Java system property you want to set and value is the value to which you want
the property set.

• In the Java code. Insert the following statement in your Java code near the top of the main
function, before you initialize any Java classes:

System.setProperty(key,value)

key is the name of the Java system property you want to set, and value is the value to which you
want the property set.

Ensure a Consistent GUI Appearance
After developing your initial GUI using the MATLAB Compiler SDK product, subsequent GUIs that
you develop may inherit properties of the MATLAB GUI, rather than properties of your initial design.
To preserve your original look and feel, set the mathworks.DisableSetLookAndFeel Java system
property to true.

Setting DisableSetLookAndFeel

The following are examples of how to set mathworks.DisableSetLookAndFeel using the
techniques in “Set Java System Properties” on page 2-38:

• In the java statement:

java -classpath X:/mypath/tomy/javabuilder.jar -
Dmathworks.DisableSetLookAndFeel=true

• In the Java code:

Class A {
main () {
         System.getProperties().set("mathworks.DisableSetLookAndFeel","true");
                  foo f = newFoo();
             }
         } 

2 Programming

2-38



Block Console Display When Creating Figures in Java
This example shows how to use waitForFigures from a Java application that you create using
MATLAB Compiler SDK. The object encapsulates MATLAB code that draws a simple plot.

1 Create a MATLAB function named drawplot.m with the following code:

drawplot.m
function drawplot()
plot(1:10);

2 Build the Java package with the Library Compiler app or compiler.build.javaPackage
using the following information:

Field Value
Library Name examples
Class Name Plotter
File to Compile drawplot.m

For example, if you are using compiler.build.javaPackage, type:
buildResults = compiler.build.javaPackage('drawplot.m', ...
'PakageName','examples', ...
'ClassName','Plotter');

For more details, see the instructions in “Generate Java Package and Build Java Application”.
3 Create a Java program in a file named runplot.java with the following code:

import com.mathworks.toolbox.javabuilder.*;
import examples.Plotter;

public class runplot 
{
  public static void main(String[] args) 
  {
    try 
    {
      plotter p = new Plotter();
      try
      {
        p.drawplot();
        p.waitForFigures();
      }
      finally 
      {
        p.dispose();
      }
    }
    catch (MWException e)
    {
      e.printStackTrace();
    }
  }
}

4 In MATLAB, copy the generated examples.jar package into your current folder.

• If you used compiler.build.javaPackage, type:
copyfile(fullfile('examplesjavaPackage','examples.jar'))

• If you used the Library Compiler, type:
copyfile(fullfile('examples','for_testing','examples.jar'))

5 In a command prompt window, navigate to your work folder.

 Block Console Display When Creating Figures in Java

2-39



6 Compile the application using javac.

• On Windows, type:
javac -classpath "matlabroot\toolbox\javabuilder\jar\javabuilder.jar";.\examples.jar runplot.java

• On UNIX, type:
javac -classpath "matlabroot/toolbox/javabuilder/jar/javabuilder.jar":./examples.jar runplot.java

Replace matlabroot with the path to your MATLAB or MATLAB Runtime installation folder. For
example, on Windows, the path may be C:\Program Files\MATLAB\R2022b.

7 Run the application.

• On Windows, type:
java -classpath .;"matlabroot\toolbox\javabuilder\jar\javabuilder.jar";.\examples.jar runplot

• On UNIX, type:
java -classpath .:"matlabroot/toolbox/javabuilder/jar/javabuilder.jar":./examples.jar runplot

The program displays a plot from 1 to 10 in a MATLAB figure window. The application ends when
you dismiss the figure.

To see what happens without the call to waitForFigures, comment out the call, rebuild the
application, and run it. In this case, the figure is drawn and immediately closes as the application
exits.

2 Programming

2-40



Ensure Multiplatform Portability for Java
Compiled MATLAB code containing only MATLAB files are platform independent, as are Java .jar
files. You can use these files on any platform, provided that the platform has either MATLAB or
MATLAB Runtime installed. However, if your compiled MATLAB code contains MEX files, which are
platform dependent, do the following:

1 Compile your MEX file once on each platform where you want to run your application.

For example, if you are running the application on a Windows machine, and you want it to run on
the Linux 64-bit platform, compile my_mex.c twice, once on a PC to get my_mex.mexw64 and
then again on a Linux 64-bit machine to get my_mex.mexa64.

2 Compile the package on one platform using the -a flag of mcc or the AdditionalFiles option
in a compiler.build function to include the MEX file compiled on the other platform(s).

In the case above, you run mcc on Windows and include the -a flag to include my_mex.mexa64.
It is not necessary to explicitly include my_mex.mexw64. In this step , the mcc command would
be:

mcc -W 'java:mycomp,myclass' my_matlab_file.m -a my_mex.mexa64 

For example, if you are running mcc on a Windows machine and you want to ensure portability of
the generated package that invokes the yprime.c file (from matlabroot\extern\examples
\mex) on the Linux 64-bit platform, execute the following mcc command:

mcc -W 'java:mycomp,myclass' callyprime.m -a yprime.mexa64 

callyprime.m can be a simple MATLAB function, as follows:

function callyprime 
disp(yprime(1,1:4)); 

Ensure that the yprime.mexa64 file is in the same folder as your Windows MEX file.

Tip If you are unsure if your JAR file contains MEX files, do the following:

1 Run mcc with the -v option to list the names of the MEX files, or enable the Verbose option in a
compiler.build function.

2 Obtain appropriate versions of these files from the version of MATLAB installed on your target
operating system.

3 Include these versions in the archive by running mcc with the -a option, or use the
AdditionalFiles options in a compiler.build function.

Caution Toolbox functionality that runs seamlessly across platforms when executed from within the
MATLAB desktop environment will continue to run seamlessly across platforms when deployed.
However, if a particular toolbox functionality is designed to run on a specific platform, then that
functionality will run only on that specific platform when deployed. For example, functionality from
the Data Acquisition Toolbox™ runs only on Windows.

 Ensure Multiplatform Portability for Java

2-41



JAR files produced by MATLAB Compiler SDK are tested and qualified to run on platforms supported
by MATLAB. For more information, see the Platform Roadmap for MATLAB.

2 Programming

2-42

https://www.mathworks.com/support/requirements/platform-road-map.html


Define Embedding and Extraction Options for Deployable Java
Archive

In this section...
“Extraction Options Using MWComponentOptions Class” on page 2-43
“Extraction Options Using Environment Variables” on page 2-45

When you deploy a Java archive, by default, the archive data is extracted from the JAR file with no
separate deployable archive or packageNamemcr folder needed on the target machine. This behavior
is helpful when storage space on a file system is limited.

If you don't want to extract deployable archive data by default, you can use either the
MWComponentOptions class or environment variables to specify options for extraction and
utilization of the deployable archive data.

Extraction Options Using MWComponentOptions Class
Select Options

Choose from the following CtfSource or ExtractLocation instantiation options to customize how
MATLAB Runtime manages deployable archive content with MWComponentOptions:

• CtfSource — This option specifies where the deployable archive may be found for an extracted
component. It defines a binary data stream comprised of the bits of the deployable archive. The
following values are objects of some type extending MWCtfSource:

Value Description
MWCtfSource.NONE Indicates that no deployable archive is to be

extracted. This option implies that the extracted
deployable archive data is already accessible
somewhere in your file system. This object is a
public, static, final instance of MWCtfSource.

MWCtfFileSource Indicates that the deployable archive data resides
within a particular file location that you specify. This
class takes a java.io.File object in its
constructor.

MWCtfDirectorySource Indicates a folder to be scanned when instantiating
the component. If a file with a .ctf suffix is found
in the folder that you supply, the deployable archive
bits are loaded from that file. This class takes a
java.io.File object in its constructor.

MWCtfStreamSource Allows deployable archive bits to be read and
extracted directly from a specified input stream.
This class takes a java.io.InputStream object in
its constructor.

• ExtractLocation — This option specifies where the extracted deployable archive content is to
be located. Since MATLAB Runtime requires all deployable archive content be located somewhere
in your file system, use the desired ExtractLocation option, along with the component type

 Define Embedding and Extraction Options for Deployable Java Archive

2-43



information, to define a unique location. A value for this option is an instance of the class
MWCtfExtractLocation. You can create an instance of this class by passing a java.io.File or
java.lang.String into the constructor to specify the file system location to be used, or you can
use one of these predefined, static final instances:

Value Descriptin
MWCtfExtractLocation.EXTRACT_TO_CAC
HE

Use to indicate that the deployable archive
content is to be placed in the MATLAB
Runtime component cache. This option is the
default setting for R2007a and forward.

MWCtfExtractLocation.EXTRACT_TO_COM
PONENT_DIR

Use when you want to locate the JAR
or .class files from where the component
has been loaded. If the location is found (e.g.,
it is in the file system), then the deployable
archive data is extracted into the same folder.
This option most closely matches the behavior
of R2007a and previous releases.

Note Deployable archives are extracted by default to temp\user_name\mcrCachen.nn.

Set Options

Use the following methods to get or set the location where the deployable archive may be found for
an extracted component:

• getCtfSource()
• setCtfSource()

Use the following methods to get or set the location where the extracted deployable archive content
is to be located:

• getExtractLocation()
• setExtractLocation()

Enable MATLAB Runtime Component Cache

If you want to enable the MATLAB Runtime Component Cache for a generated Java class utilizing
deployable archive content already resident in your file system, instantiate MWComponentOptions by
using the following statements:

MWComponentOptions options = new MWComponentOptions();

// set options for the class by calling setter methods
// on 'options'
options.setCtfSource(MWCtfSource.NONE);
  options.setExtractLocation(
    new MWCtfExtractLocation("C:\\readonlydir\\MyModel_mcr"));

// instantiate the class using the desired options 
MyModel m = new MyModel(options);

2 Programming

2-44



Extraction Options Using Environment Variables
Use the following environment variables to change the default settings for the cache size and location
of the deployable archive extraction.

Environment Variable Purpose Notes
MCR_CACHE_ROOT When set to the location of where

you want the deployable archive to
be extracted, this variable overrides
the default per-user component
cache location. This is true for
embedded .ctf files only.

On macOS, this variable is ignored
in MATLAB R2020a and later. The
app bundle contains the files
necessary for runtime.

MCR_CACHE_SIZE When set, this variable overrides
the default component cache size.

The initial limit for this variable is
32M (megabytes). This may,
however, be changed after you have
set the variable the first time. Edit
the file .max_size, which resides
in the file designated by running the
mcrcachedir command, with the
desired cache size limit.

See Also

Related Examples
• “Deployable Archive”

 Define Embedding and Extraction Options for Deployable Java Archive

2-45





Distribute Integrated Java Applications

• “Package Java Applications” on page 3-2
• “About the MATLAB Runtime” on page 3-3

3



Package Java Applications
1 Gather and package the following files for installation on end user computers:

• MATLAB Runtime installer

See “Install and Configure MATLAB Runtime”.
• MATLAB generated Java package
• JAR files for the application

2 Include directions for installing the MATLAB Runtime.

See “Install and Configure MATLAB Runtime”.
3 Include directions for adding the required JAR files to the Java CLASSPATH.

At a minimum, the CLASSPATH must include:

• mcrroot/toolbox/javabuilder/jar/javabuilder.jar
• MATLAB generated Java package
• JAR files for the application

3 Distribute Integrated Java Applications

3-2



About the MATLAB Runtime
In this section...
“How is MATLAB Runtime Different from MATLAB?” on page 3-3
“Performance Considerations for MATLAB Runtime” on page 3-3

The MATLAB Runtime is a standalone set of shared libraries, MATLAB code, and other files that
enables the execution of MATLAB files on computers without an installed version of MATLAB.
Applications that use artifacts built with MATLAB Compiler SDK require access to an appropriate
version of the MATLAB Runtime to run.

End-users of compiled artifacts without access to MATLAB must install the MATLAB Runtime on their
computers or know the location of a network-installed MATLAB Runtime. The installers generated by
the compiler apps may include the MATLAB Runtime installer. If you compiled your artifact using
mcc, you should direct your end-users to download the MATLAB Runtime installer from the website
https://www.mathworks.com/products/compiler/mcr.

For more information, see “Install and Configure MATLAB Runtime”.

How is MATLAB Runtime Different from MATLAB?
The MATLAB Runtime differs from MATLAB in several important ways:

• In MATLAB Runtime, MATLAB files are encrypted and immutable.
• MATLAB has a desktop graphical interface. MATLAB Runtime has all the MATLAB functionality

without the graphical interface.
• MATLAB Runtime is version-specific. You must run your applications with the version of MATLAB

Runtime associated with the version of MATLAB Compiler SDK with which it was created. For
example, if you compiled an application using release R2020b of MATLAB, end users must have
version 9.9 or later of MATLAB Runtime installed. Use mcrversion to return the version number
of MATLAB Runtime.

• The MATLAB paths in a MATLAB Runtime instance are fixed and cannot be changed. To change
them, you must first customize them within MATLAB.

Performance Considerations for MATLAB Runtime
MATLAB Compiler SDK was designed to work with a large range of applications that use the MATLAB
programming language. Because of this, run-time libraries are large.

Since MATLAB Runtime provides full support for the MATLAB language, including the Java
programming language, starting a compiled application takes approximately the same amount of time
as starting MATLAB. The amount of resources consumed by MATLAB Runtime is necessary in order
to retain the power and functionality of a full version of MATLAB.

Calls into MATLAB Runtime are serialized, so calls into MATLAB Runtime are threadsafe. This can
impact performance.

See Also
mcrversion | compiler.runtime.download

 About the MATLAB Runtime

3-3

https://www.mathworks.com/products/compiler/matlab-runtime.html


Related Examples
• “Install and Configure MATLAB Runtime”

3 Distribute Integrated Java Applications

3-4



Distribute to End Users

• “MATLAB Runtime Path Settings for Development and Testing” on page 4-2
• “Set MATLAB Runtime Path for Deployment” on page 4-4

4



MATLAB Runtime Path Settings for Development and Testing
In this section...
“Path for Java Development on All Platforms” on page 4-2
“Path Modifications Required for Accessibility” on page 4-2
“Windows Settings for Development and Testing” on page 4-2
“Linux Settings for Development and Testing” on page 4-2
“OS X Settings for Development and Testing” on page 4-2

Path for Java Development on All Platforms
There are additional requirements when programming in the Java programming language. For more
information see “Configure Your Environment for Generating Java Packages” on page 1-3.

Path Modifications Required for Accessibility
In order to use some screen-readers or assistive technologies, such as JAWS®, you must add the
following DLLs to your Windows path:

matlabroot\sys\java\jre\arch\jre\bin\JavaAccessBridge.dll
matlabroot\sys\java\jre\arch\jre\bin\WindowsAccessBridge.dll

You may not be able to use such technologies without doing so.

Windows Settings for Development and Testing
When programming with compiled MATLAB code, add the following folder to your system PATH
environment variable:

matlabroot\runtime\win32|win64

Linux Settings for Development and Testing
Add the following platform-specific folders to your dynamic library path.

Note For readability, the following commands appear on separate lines, but you must enter each
setenv command on one line.

setenv LD_LIBRARY_PATH 
   matlabroot/runtime/glnxa64: 
   matlabroot/bin/glnxa64: 
   matlabroot/sys/os/glnxa64:
   matlabroot/sys/opengl/lib/glnxa64

OS X Settings for Development and Testing
Add the following platform-specific folders to your dynamic library path.

4 Distribute to End Users

4-2



Note For readability, the following commands appear on separate lines, but you must enter each
setenv command on one line.

setenv DYLD_LIBRARY_PATH 
   matlabroot/runtime/maci64: 
   matlabroot/bin/maci64: 
   matlabroot/sys/os/maci64:  

 MATLAB Runtime Path Settings for Development and Testing

4-3



Set MATLAB Runtime Path for Deployment

In this section...
“Library Path Environment Variables and MATLAB Runtime Folders” on page 4-4
“Windows” on page 4-5
“Linux” on page 4-5
“macOS” on page 4-6
“Set Path Permanently on UNIX” on page 4-6

Applications generated with MATLAB Compiler or MATLAB Compiler SDK use the system library path
to locate the MATLAB Runtime libraries. The MATLAB Runtime installer for Windows automatically
sets the library path during installation, but on Linux or macOS you must add the libraries manually.
After you install MATLAB Runtime, add the run-time folders to the system library path according to
the instructions for your operating system and shell environment.

Alternatively, you can pass the location of MATLAB Runtime as an input to the associated shell script
(run_application.sh) on Linux or macOS to launch an application.

Note

• Your library path may contain multiple versions of MATLAB Runtime. Applications launched
without using the shell script use the first version listed in the path.

• Save the value of your current library path as a backup before modifying it.
• If you are using a network install of MATLAB Runtime, see “Run Applications Using a Network

Installation of MATLAB Runtime”.

Library Path Environment Variables and MATLAB Runtime Folders
Operating
System

Environment
Variable

Directories

Windows PATH <MATLAB_RUNTIME_INSTALL_DIR>\runtime\<arch>
Linux LD_LIBRARY_PATH <MATLAB_RUNTIME_INSTALL_DIR>/runtime/glnxa64

<MATLAB_RUNTIME_INSTALL_DIR>/bin/glnxa64

<MATLAB_RUNTIME_INSTALL_DIR>/sys/os/glnxa64

<MATLAB_RUNTIME_INSTALL_DIR>/extern/bin/glnxa64
macOS DYLD_LIBRARY_PAT

H
<MATLAB_RUNTIME_INSTALL_DIR>/runtime/maci64

<MATLAB_RUNTIME_INSTALL_DIR>/bin/maci64

<MATLAB_RUNTIME_INSTALL_DIR>/sys/os/maci64

<MATLAB_RUNTIME_INSTALL_DIR>/extern/bin/maci64

4 Distribute to End Users

4-4



Windows
The MATLAB Runtime installer for Windows automatically sets the library path during installation. If
you do not use the installer, complete the following steps to set the PATH environment variable
permanently.

1 Run C:\Windows\System32\SystemPropertiesAdvanced.exe and click the Environment
Variables... button.

2 Select the system variable Path and click Edit....

Note If you do not have administrator rights on the machine, select the user variable Path
instead of the system variable.

3 Click New and add the folder <MATLAB_RUNTIME_INSTALL_DIR>\runtime\<arch>.

For example, if you are using MATLAB Runtime R2022b located in the default installation folder
on 64-bit Windows, add C:\Program Files\MATLAB\MATLAB Runtime\R2022b\runtime
\win64.

4 Click OK to apply the change.

Note If the path contains multiple versions of MATLAB Runtime, applications use the first version
listed in the path.

Linux
For information on setting environment variables in shells other than Bash, see your shell
documentation.

Bash Shell

1 Display the current value of LD_LIBRARY_PATH in the terminal.

echo $LD_LIBRARY_PATH
2 Append the MATLAB Runtime folders to the LD_LIBRARY_PATH variable for the current session.

export LD_LIBRARY_PATH="${LD_LIBRARY_PATH:+${LD_LIBRARY_PATH}:}\
<MATLAB_RUNTIME_INSTALL_DIR>/runtime/glnxa64:\
<MATLAB_RUNTIME_INSTALL_DIR>/bin/glnxa64:\
<MATLAB_RUNTIME_INSTALL_DIR>/sys/os/glnxa64:\
<MATLAB_RUNTIME_INSTALL_DIR>/extern/bin/glnxa64"

Note If you require Mesa Software OpenGL® rendering to resolve low level graphics issues, add
the folder <MATLAB_RUNTIME_INSTALL_DIR>/sys/opengl/lib/glnxa64 to the path. For
details, see “Resolving Low-Level Graphics Issues”.

For example, if you are using MATLAB Runtime R2022b located in the default installation folder,
use the following command:

export LD_LIBRARY_PATH="${LD_LIBRARY_PATH:+${LD_LIBRARY_PATH}:}\
/usr/local/MATLAB/MATLAB_Runtime/R2022b/runtime/glnxa64:\

 Set MATLAB Runtime Path for Deployment

4-5



/usr/local/MATLAB/MATLAB_Runtime/R2022b/bin/glnxa64:\
/usr/local/MATLAB/MATLAB_Runtime/R2022b/sys/os/glnxa64:\
/usr/local/MATLAB/MATLAB_Runtime/R2022b/extern/bin/glnxa64"

3 Display the new value of LD_LIBRARY_PATH to ensure the path is correct.

echo $LD_LIBRARY_PATH
4 Type ldd --version to check your version of GNU® C library (glibc). If the version displayed

is 2.17 or lower, add <MATLAB_RUNTIME_INSTALL_DIR>/bin/glnxa64/
glibc-2.17_shim.so to the LD_PRELOAD environment variable using the following command:

export LD_PRELOAD="${LD_PRELOAD:+${LD_PRELOAD}:}\
<MATLAB_RUNTIME_INSTALL_DIR>/bin/glnxa64/glibc-2.17_shim.so"

5 To make these changes permanent, see “Set Path Permanently on UNIX”.

macOS
1 Display the current value of DYLD_LIBRARY_PATH in the terminal.

echo $DYLD_LIBRARY_PATH
2 Append the MATLAB Runtime folders to the DYLD_LIBRARY_PATH variable for the current

session.

export DYLD_LIBRARY_PATH="${DYLD_LIBRARY_PATH:+${DYLD_LIBRARY_PATH}:}\
<MATLAB_RUNTIME_INSTALL_DIR>/runtime/maci64:\
<MATLAB_RUNTIME_INSTALL_DIR>/bin/maci64:\
<MATLAB_RUNTIME_INSTALL_DIR>/sys/os/maci64:\
<MATLAB_RUNTIME_INSTALL_DIR>/extern/bin/maci64"

For example, if you are using MATLAB Runtime R2022b located in the default installation folder,
use the following command:

export DYLD_LIBRARY_PATH="${DYLD_LIBRARY_PATH:+${DYLD_LIBRARY_PATH}:}\
/Applications/MATLAB/MATLAB_Runtime/R2022b/runtime/maci64:\
/Applications/MATLAB/MATLAB_Runtime/R2022b/bin/maci64:\
/Applications/MATLAB/MATLAB_Runtime/R2022b/sys/os/maci64:\
/Applications/MATLAB/MATLAB_Runtime/R2022b/extern/bin/maci64"

3 Display the value of DYLD_LIBRARY_PATH to ensure the path is correct.

echo $DYLD_LIBRARY_PATH
4 To make these changes permanent, see “Set Path Permanently on UNIX”.

Set Path Permanently on UNIX

Caution The MATLAB Runtime libraries may conflict with other applications that use the library
path. In this case, set the path only for the current session, or run MATLAB Compiler SDK
applications using the generated shell script.

To set an environment variable at login on Linux or macOS, append the export command to the shell
configuration file ~/.bash_profile in a Bash shell or ~/.zprofile in a Zsh shell.

To determine your current shell environment, type echo $SHELL.

4 Distribute to End Users

4-6



See Also

More About
• “Install and Configure MATLAB Runtime”
• “Run Applications Using a Network Installation of MATLAB Runtime”
• “Change Environment Variable for Shell Command”

 Set MATLAB Runtime Path for Deployment

4-7





Sample Java Applications

• “Display MATLAB Plot in Java Application” on page 5-2
• “Create Java Application with Multiple MATLAB Functions” on page 5-6
• “Assign Multiple MATLAB Functions to Java Class” on page 5-11
• “Create Java Phone Book Application Using Structure Array” on page 5-18
• “Pass Java Objects to MATLAB” on page 5-22
• “Use MATLAB Class in Java Application” on page 5-28

Note Remember to double-quote all parts of the java command paths that contain spaces.

5



Display MATLAB Plot in Java Application
In this section...
“Files” on page 5-2
“Procedure” on page 5-2

In this example, you integrate a MATLAB function into a Java application by performing these steps:

1 Use the MATLAB Compiler SDK product to convert a MATLAB function (drawplot.m) to a
method of a Java class (plotter) and wrap the class in a Java package (plotdemo).

2 Access the MATLAB function in a Java application (createplot.java) by instantiating the
plotter class and using the MWArray class library to handle data conversion.

Note For complete reference information about the MWArray class hierarchy, see the
com.mathworks.toolbox.javabuilder package.

3 Build and run the createplot.java application.

Files
MATLAB Function
Location

matlabroot\toolbox\javabuilder\Examples\PlotExample
\PlotDemoComp\drawplot.m

Java Code Location matlabroot\toolbox\javabuilder\Examples\PlotExample
\PlotDemoJavaApp\createplot.java

Procedure
1 Copy the PlotExample folder that ships with MATLAB to your work folder:

copyfile(fullfile(matlabroot,'toolbox','javabuilder','Examples','PlotExample'),'PlotExample')

At the MATLAB command prompt, navigate to the new PlotExample\PlotDemoComp subfolder
in your work folder.

2 Examine the drawplot.m function.

function drawplot(x,y)
plot(x,y);

The function displays a plot of input parameters x and y.
3 Create a Java package by using the Library Compiler app or compiler.build.javaPackage

using the following information:

Project Name plotdemo
Class Name plotter
File to Compile drawplot.m

For example, if you are using compiler.build.javaPackage, type:
buildResults = compiler.build.javaPackage('drawplot.m', ...
'PackageName','plotdemo', ...
'ClassName','plotter');

5 Sample Java Applications

5-2



For more details, see the instructions in “Generate Java Package and Build Java Application”.
4 Write source code for a Java application that accesses the MATLAB function.

The sample application for this example is in PlotExample\PlotDemoJavaApp
\createplot.java.

createplot.java
/* Necessary package imports */
import com.mathworks.toolbox.javabuilder.*;
import plotdemo.*;

/*
 * createplot class demonstrates plotting x-y data into 
 * a MATLAB figure window by graphing a simple parabola.
 */
class createplot
{
   public static void main(String[] args)
   {
      MWNumericArray x = null;   /* Array of x values */
      MWNumericArray y = null;   /* Array of y values */
      plotter thePlot = null;    /* Plotter class instance */
      int n = 20;                /* Number of points to plot */

      try
      {
         /* Allocate arrays for x and y values */
         int[] dims = {1, n};
         x = MWNumericArray.newInstance(dims, 
            MWClassID.DOUBLE, MWComplexity.REAL);
         y = MWNumericArray.newInstance(dims, 
            MWClassID.DOUBLE, MWComplexity.REAL);

         /* Set values so that y = x^2 */
         for (int i = 1; i <= n; i++)
         {
            x.set(i, i);
            y.set(i, i*i);
         }

         /* Create new plotter object */
         thePlot = new plotter();

         /* Plot data */
         thePlot.drawplot(x, y);
         thePlot.waitForFigures(); 
      }

      catch (Exception e)
      {
         System.out.println("Exception: " + e.toString());
      }

      finally
      {
         /* Free native resources */
         MWArray.disposeArray(x);
         MWArray.disposeArray(y);
         if (thePlot != null)
            thePlot.dispose();
      }
   }
}

The program does the following:

• Creates two arrays of double values x and y using MWNumericArray to represent the
equation y = x2

• Instantiates the plotter class as thePlot object

thePlot = new plotter();

• Calls the drawplot method to plot a simple parabola using the MATLAB plot function

 Display MATLAB Plot in Java Application

5-3



thePlot.drawplot(x,y);
• Uses a try-catch block to catch and handle any exceptions

5 In MATLAB, navigate to the PlotDemoJavaApp folder.
6 Copy the generated plotdemo.jar package into this folder.

• If you used compiler.build.javaPackage, type:
copyfile(fullfile('..','PlotDemoComp','plotdemojavaPackage','plotdemo.jar'))

• If you used the Library Compiler, type:
copyfile(fullfile('..','PlotDemoComp','plotdemo','for_testing','plotdemo.jar'))

7 In a command prompt window, navigate to the PlotDemoJavaApp folder where you copied
plotdemo.jar.

8 Compile the createplot application using javac.

• On Windows, execute this command:
javac -classpath "matlabroot\toolbox\javabuilder\jar\javabuilder.jar";.\plotdemo.jar createplot.java

• On UNIX, execute this command:
javac -classpath "matlabroot/toolbox/javabuilder/jar/javabuilder.jar":./plotdemo.jar createplot.java

Replace matlabroot with the path to your MATLAB or MATLAB Runtime installation folder. For
example, on Windows, the path may be C:\Program Files\MATLAB\R2022b.

9 Run the createplot application.

• On Windows, type:
java -classpath .;"matlabroot\toolbox\javabuilder\jar\javabuilder.jar";.\plotdemo.jar createplot

• On UNIX, type:
java -classpath .:"matlabroot/toolbox/javabuilder/jar/javabuilder.jar":./plotdemo.jar createplot

The createplot program displays the following output.

5 Sample Java Applications

5-4



See Also
libraryCompiler | compiler.build.javaPackage

Related Examples
• “Create Java Phone Book Application Using Structure Array” on page 5-18

 Display MATLAB Plot in Java Application

5-5



Create Java Application with Multiple MATLAB Functions
In this section...
“spectralanalysis Application” on page 5-6
“Files” on page 5-6
“Procedure” on page 5-6

This example shows how to create a Java application that uses multiple MATLAB functions to analyze
a signal and then graph the result.

In this example, you perform the following steps:

1 Use MATLAB Compiler SDK to create a package containing a class that has a private method that
is automatically encapsulated.

2 Access the MATLAB functions in a Java application, including use of the MWArray class hierarchy
to represent data.

3 Build and run the application.

spectralanalysis Application
The spectralanalysis application analyzes a signal and graphs the result. The class fourier
performs a fast Fourier transform (FFT) on an input data array. A method of this class, computefft,
returns the results of that FFT as two output arrays—an array of frequency points and the power
spectral density.

The second method, plotfft, graphs the returned data. These two methods, computefft and
plotfft, encapsulate MATLAB functions.

Files
MATLAB Functions computefft.m

plotfft.m
MATLAB Function
Location

matlabroot\toolbox\javabuilder\Examples\SpectraExample
\SpectraDemoComp

Java Code Location matlabroot\toolbox\javabuilder\Examples\SpectraExample
\SpectraDemoJavaApp\powerspect.java

Procedure
1 Copy the SpectraExample folder that ships with MATLAB to your work folder:

copyfile(fullfile(matlabroot,'toolbox','javabuilder','Examples','SpectraExample'),'SpectraExample')

At the MATLAB command prompt, navigate to the new SpectraExample\SpectraDemoComp
subfolder in your work folder.

2 Examine the MATLAB functions computefft.m and plotfft.m.

computefft.m
function [fftdata, freq, powerspect] = computefft(data, interval)
if (isempty(data))

5 Sample Java Applications

5-6



   fftdata = [];
   freq = [];
   powerspect = [];
   return;
end

if (interval <= 0)
   error('BuilderJA:Examples:samplingInterval','Sampling interval must be greater then zero');
   return;
end

fftdata = fft(data);
freq = (0:length(fftdata)-1)/(length(fftdata)*interval);
powerspect = abs(fftdata)/(sqrt(length(fftdata)));

plotfft.m

function [fftdata, freq, powerspect] = plotfft(data, interval)
[fftdata, freq, powerspect] = computefft(data, interval);
len = length(fftdata);
if (len <= 0)
   return;
end

t = 0:interval:(len-1)*interval;
subplot(2,1,1), plot(t, data)
xlabel('Time'), grid on
title('Time domain signal')
subplot(2,1,2), plot(freq(1:len/2), powerspect(1:len/2))
xlabel('Frequency (Hz)'), grid on
title('Power spectral density')

3 Build the Java package with the Library Compiler app or compiler.build.javaPackage.

Use the following information for your project:

Project Name spectralanalysis
Class Name fourier
File to Compile plotfft.m

Note In this example, the application that uses the fourier class does not call computefft
directly. The computefft method is required only by the plotfft method. You do not need to
manually add the computefft function to the package, as the compiler automatically includes it
during dependency analysis.

For example, if you are using compiler.build.javaPackage, type:
buildResults = compiler.build.javaPackage('plotfft.m', ...
'PackageName','spectralanalysis', ...
'ClassName','fourier');

For more details, see the instructions in “Generate Java Package and Build Java Application”.
4 Write source code for a Java application that accesses the MATLAB functions.

The sample application for this example is in SpectraExample\SpectraDemoJavaApp
\powerspect.java.

 Create Java Application with Multiple MATLAB Functions

5-7



powerspect.java
/* Necessary package imports */
import com.mathworks.toolbox.javabuilder.*;
import spectralanalysis.*;

/*
 * powerspect class computes and plots the power
 * spectral density of an input signal.
 */
class powerspect
{
   public static void main(String[] args)
   {
      double interval = 0.01;     /* Sampling interval */
      int nSamples = 1001;        /* Number of samples */
      MWNumericArray data = null; /* Stores input data */
      Object[] result = null;     /* Stores result */
      fourier theFourier = null;  /* Fourier class instance */

      try
      {
         /*
          * Construct input data as sin(2*PI*15*t) + 
          * sin(2*PI*40*t) plus a random signal.
          *    Duration = 10
          *    Sampling interval = 0.01
          */
         int[] dims = {1, nSamples};
         data = MWNumericArray.newInstance(dims, MWClassID.DOUBLE,
                                              MWComplexity.REAL);
         for (int i = 1; i <= nSamples; i++)
         {
            double t = (i-1)*interval;
            double x = Math.sin(2.0*Math.PI*15.0*t) +
               Math.sin(2.0*Math.PI*40.0*t) + 
               Math.random();
            data.set(i, x);
         }

         /* Create new fourier object */
         theFourier = new fourier();          

         /* Compute power spectral density and plot result */
         result = theFourier.plotfft(3, data, 
            Double.valueOf(interval));
         theFourier.waitForFigures(); 
      }

      catch (Exception e)
      {
         System.out.println("Exception: " + e.toString());
      }

      finally
      {
         /* Free native resources */
         MWArray.disposeArray(data);
         MWArray.disposeArray(result);
         if (theFourier != null)
            theFourier.dispose();
      }
   }
}

The program does the following:

• Constructs an input array with values representing a random signal with two sinusoids at 15
and 40 Hz embedded inside of it

• Creates an MWNumericArray array that contains the data
data = MWNumericArray.newInstance(dims, MWClassID.DOUBLE, MWComplexity.REAL);

• Instantiates a fourier object
• Calls the plotfft method, which calls computeftt and plots the data

5 Sample Java Applications

5-8



• Uses a try-catch block to handle exceptions
• Frees native resources using MWArray methods

5 In MATLAB, navigate to the SpectraDemoJavaApp folder.
6 Copy the generated spectralanalysis.jar package into this folder.

• If you used compiler.build.javaPackage, type:
copyfile(fullfile('..','SpectraDemoComp','spectralanalysisjavaPackage','spectralanalysis.jar'))

• If you used the Library Compiler, type:
copyfile(fullfile('..','SpectraDemoComp','spectralanalysis','for_testing','spectralanalysis.jar'))

7 Open a command prompt window and navigate to the SpectraDemoJavaApp folder.
8 Compile the powerspect.java application using javac.

• On Windows, execute the following command:

javac -classpath "matlabroot\toolbox\javabuilder\jar\javabuilder.jar";.\spectralanalysis.jar powerspect.java
• On UNIX, execute the following command:

javac -classpath "matlabroot/toolbox/javabuilder/jar/javabuilder.jar":./spectralanalysis.jar powerspect.java

Replace matlabroot with the path to your MATLAB or MATLAB Runtime installation folder. For
example, on Windows, the path may be C:\Program Files\MATLAB\R2022b.

9 Run the powerspect application.

• On Windows, execute the following command:

java -classpath .;"matlabroot\toolbox\javabuilder\jar\javabuilder.jar";.\spectralanalysis.jar powerspect
• On UNIX, execute the following command:

java -classpath .:"matlabroot/toolbox/javabuilder/jar/javabuilder.jar":./spectralanalysis.jar powerspect

Note If you are running the application on the Mac 64-bit platform, you must add the -d64 flag
in the Java command.

The powerspect program displays the following output:

 Create Java Application with Multiple MATLAB Functions

5-9



See Also
libraryCompiler | compiler.build.javaPackage

Related Examples
• “Assign Multiple MATLAB Functions to Java Class” on page 5-11

5 Sample Java Applications

5-10



Assign Multiple MATLAB Functions to Java Class
In this section...
“MatrixMathApp Application” on page 5-11
“Files” on page 5-11
“Procedure” on page 5-11
“Understanding the getfactor Program” on page 5-16

This example shows you how to create a Java matrix math program using multiple MATLAB functions.

In this example, you perform the following steps:

1 Assign more than one MATLAB function to a generated class.
2 Manually handle native memory management.
3 Access the MATLAB functions in a Java application (getfactor.java) by instantiating Factor

and using the MWArray class library to handle data conversion.
4 Build and run the MatrixMathDemoApp application.

MatrixMathApp Application
The MatrixMathApp application performs Cholesky, LU, and QR factorizations on a simple
tridiagonal matrix (finite difference matrix) with the following form:

A = [ 2 -1  0  0  0
     -1  2 -1  0  0
      0 -1  2 -1  0
      0  0 -1  2 -1
      0  0  0 -1  2 ]

You supply the size of the matrix on the command line, and the program constructs the matrix and
performs the three factorizations. The original matrix and the results are printed to standard output.
You may optionally perform the calculations using a sparse matrix by specifying the string "sparse" as
the second parameter on the command line.

Files
MATLAB Functions cholesky.m

ludecomp.m
qrdecomp.m

MATLAB Function
Location

matlabroot\toolbox\javabuilder\Examples\MatrixMathExample
\MatrixMathDemoComp\

Java Code Location matlabroot\toolbox\javabuilder\Examples\MatrixMathExample
\MatrixMathDemoJavaApp\getfactor.java

Procedure
1 Copy the MatrixMathExample folder that ships with MATLAB to your work folder:

copyfile(fullfile(matlabroot,'toolbox','javabuilder','Examples','MatrixMathExample'),'MatrixMathExample')

 Assign Multiple MATLAB Functions to Java Class

5-11



At the MATLAB command prompt, navigate to the new MatrixMathExample
\MatrixMathDemoComp subfolder in your work folder.

2 If you have not already done so, set up your Java development environment. For details, see
“Configure Your Environment for Generating Java Packages” on page 1-3.

3 Examine the MATLAB functions cholesky.m, ludecomp.m, and qrdecomp.m.
function [L] = Cholesky(A)
    L = chol(A);

function [L,U] = LUDecomp(A)
    [L,U] = lu(A);

function [Q,R] = QRDecomp(A)
    [Q,R] = qr(A);

4 Build the Java package with the Library Compiler app or compiler.build.javaPackage
using the following information:

Field Value
Library Name factormatrix
Class Name factor
Files to Compile cholesky    ludecomp    qrdecomp

For example, if you are using compiler.build.javaPackage, type:
buildResults = compiler.build.javaPackage(["cholesky.m","ludecomp.m","qrdecomp.m"], ...
'PackageName','factormatrix', ...
'ClassName','factor');

For more details, see the instructions in “Generate Java Package and Build Java Application”.
5 Write source code for an application that accesses the MATLAB functions.

The sample application for this example is in MatrixMathExample\MatrixMathDemoJavaApp
\getfactor.java.

getfactor.java
/* Necessary package imports */
import com.mathworks.toolbox.javabuilder.*;
import factormatrix.*;

/*
 * getfactor class computes cholesky, LU, and QR 
 * factorizations of a finite difference matrix
 * of order N. The value of N is passed on the
 * command line. If a second command line arg
 * is passed with the value of "sparse", then
 * a sparse matrix is used.
 */
class getfactor
{
   public static void main(String[] args)
   {
      MWNumericArray a = null;   /* Stores matrix to factor */
      Object[] result = null;    /* Stores the result */
      factor theFactor = null;   /* Stores factor class instance */

      try
      {
         /* If no input, exit */
         if (args.length == 0)
         {
            System.out.println("Error: must input a positive integer");
            return;
         }

         /* Convert input value */
         int n = Integer.valueOf(args[0]).intValue();

         if (n <= 0)

5 Sample Java Applications

5-12



         {
            System.out.println("Error: must input a positive integer");
            return;
         }

         /*
          * Allocate matrix. If second input is "sparse"
          * allocate a sparse array 
          */
         int[] dims = {n, n};

         if (args.length > 1 && args[1].equals("sparse"))
            a = MWNumericArray.newSparse(dims[0], dims[1],n+2*(n-1), 
                                  MWClassID.DOUBLE, MWComplexity.REAL);
         else
            a = MWNumericArray.newInstance(dims,MWClassID.DOUBLE, MWComplexity.REAL);

         /* Set matrix values */
         int[] index = {1, 1};

         for (index[0] = 1; index[0] <= dims[0]; index[0]++)
         {
            for (index[1] = 1; index[1] <= dims[1]; index[1]++)
            {
               if (index[1] == index[0])
                  a.set(index, 2.0);
               else if (index[1] == index[0]+1 || index[1] == index[0]-1)
                  a.set(index, -1.0);
            }
         }

         /* Create new factor object */
         theFactor = new factor();

         /* Print original matrix */
         System.out.println("Original matrix:");
         System.out.println(a);

         /* Compute cholesky factorization and print results. */
         result = theFactor.cholesky(1, a);
         System.out.println("Cholesky factorization:");
         System.out.println(result[0]);
         MWArray.disposeArray(result);

         /* Compute LU factorization and print results. */
         result = theFactor.ludecomp(2, a);
         System.out.println("LU factorization:");
         System.out.println("L matrix:");
         System.out.println(result[0]);
         System.out.println("U matrix:");
         System.out.println(result[1]);
         MWArray.disposeArray(result);

         /* Compute QR factorization and print results. */
         result = theFactor.qrdecomp(2, a);
         System.out.println("QR factorization:");
         System.out.println("Q matrix:");
         System.out.println(result[0]);
         System.out.println("R matrix:");
         System.out.println(result[1]);
      }

      catch (Exception e)
      {
         System.out.println("Exception: " + e.toString());
      }

      finally
      {
         /* Free native resources */
         MWArray.disposeArray(a);
         MWArray.disposeArray(result);
         if (theFactor != null)
            theFactor.dispose();
      }
   }
}

This statement creates an instance of the class factor:

 Assign Multiple MATLAB Functions to Java Class

5-13



theFactor = new factor();

The following statements call the methods that encapsulate the MATLAB functions:

result = theFactor.cholesky(1, a);
...
result = theFactor.ludecomp(2, a);
...
result = theFactor.qrdecomp(2, a);
...

6 In MATLAB, navigate to the MatrixMathDemoJavaApp folder.
7 Copy the generated factormatrix.jar package into this folder.

• If you used compiler.build.javaPackage, type:
copyfile(fullfile('..','MatrixMathDemoComp','factormatrixjavaPackage','factormatrix.jar'))

• If you used the Library Compiler, type:
copyfile(fullfile('..','MatrixMathDemoComp','factormatrix','for_testing','factormatrix.jar'))

8 In a command prompt window, cd to the MatrixMathDemoJavaApp folder.
9 Compile the getfactor application using javac.

• On Windows, type:
javac -classpath "matlabroot\toolbox\javabuilder\jar\javabuilder.jar";.\factormatrix.jar getfactor.java

• On UNIX, type:
javac -classpath "matlabroot/toolbox/javabuilder/jar/javabuilder.jar":./factormatrix.jar getfactor.java

Replace matlabroot with the path to your MATLAB or MATLAB Runtime installation folder. For
example, on Linux, the path may be /usr/local/MATLAB/R2022b.

10 Run the getfactor application using a nonsparse matrix.

• On Windows, type:
java -classpath .;"matlabroot\toolbox\javabuilder\jar\javabuilder.jar";.\factormatrix.jar getfactor 4

• On UNIX, type:
java -classpath .:"matlabroot/toolbox/javabuilder/jar/javabuilder.jar":./factormatrix.jar getfactor 4

Note If you are running the application on the Mac 64-bit platform, you must add the -d64 flag
in the Java command.

Output for Nonsparse Matrix

Original matrix:
     2    -1     0     0
    -1     2    -1     0
     0    -1     2    -1
     0     0    -1     2
Cholesky factorization:
    1.4142   -0.7071         0         0
         0    1.2247   -0.8165         0
         0         0    1.1547   -0.8660
         0         0         0    1.1180

LU factorization:
L matrix:

5 Sample Java Applications

5-14



    1.0000         0         0         0
   -0.5000    1.0000         0         0
         0   -0.6667    1.0000         0
         0         0   -0.7500    1.0000

U matrix:
    2.0000   -1.0000         0         0
         0    1.5000   -1.0000         0
         0         0    1.3333   -1.0000
         0         0         0    1.2500

QR factorization:
Q matrix:
   -0.8944   -0.3586   -0.1952    0.1826
    0.4472   -0.7171   -0.3904    0.3651
         0    0.5976   -0.5855    0.5477
         0         0    0.6831    0.7303

R matrix:
   -2.2361    1.7889   -0.4472         0
         0   -1.6733    1.9124   -0.5976
         0         0   -1.4639    1.9518
         0         0         0    0.9129

To run the same program for a sparse matrix, use the same command and add the string sparse at
the end. For example, on Windows, type:

java -classpath .;"matlabroot\toolbox\javabuilder\jar\javabuilder.jar";.\factormatrix.jar getfactor 4 sparse

Output for Sparse Matrix

Original matrix:
   (1,1)        2
   (2,1)       -1
   (1,2)       -1
   (2,2)        2
   (3,2)       -1
   (2,3)       -1
   (3,3)        2
   (4,3)       -1
   (3,4)       -1
   (4,4)        2

Cholesky factorization:
   (1,1)       1.4142
   (1,2)      -0.7071
   (2,2)       1.2247
   (2,3)      -0.8165
   (3,3)       1.1547
   (3,4)      -0.8660
   (4,4)       1.1180

LU factorization:

 Assign Multiple MATLAB Functions to Java Class

5-15



L matrix:
   (1,1)       1.0000
   (2,1)      -0.5000
   (2,2)       1.0000
   (3,2)      -0.6667
   (3,3)       1.0000
   (4,3)      -0.7500
   (4,4)       1.0000

U matrix:
   (1,1)       2.0000
   (1,2)      -1.0000
   (2,2)       1.5000
   (2,3)      -1.0000
   (3,3)       1.3333
   (3,4)      -1.0000
   (4,4)       1.2500

QR factorization:
Q matrix:
   (1,1)       0.8944
   (2,1)      -0.4472
   (1,2)       0.3586
   (2,2)       0.7171
   (3,2)      -0.5976
   (1,3)       0.1952
   (2,3)       0.3904
   (3,3)       0.5855
   (4,3)      -0.6831
   (1,4)       0.1826
   (2,4)       0.3651
   (3,4)       0.5477
   (4,4)       0.7303

R matrix:
   (1,1)       2.2361
   (1,2)      -1.7889
   (2,2)       1.6733
   (1,3)       0.4472
   (2,3)      -1.9124
   (3,3)       1.4639
   (2,4)       0.5976
   (3,4)      -1.9518
   (4,4)       0.9129

Understanding the getfactor Program
The getfactor program takes one or two arguments from standard input. The first argument is
converted to the integer order of the test matrix. If the string sparse is passed as the second
argument, a sparse matrix is created to contain the test array. The Cholesky, LU, and QR
factorizations are then computed and the results are displayed to standard output.

The main method has three parts:

5 Sample Java Applications

5-16



• The first part sets up the input matrix, creates a new factor object, and calls the cholesky,
ludecomp, and qrdecomp methods. This part is executed inside of a try block, so that if an
exception occurs during execution, the corresponding catch block will be executed.

• The second part is the catch block. The code prints a message to standard output to let the user
know about the error that has occurred.

• The third part is a finally block to manually clean up native resources before exiting.

See Also
libraryCompiler | compiler.build.javaPackage

Related Examples
• “Use MATLAB Class in Java Application” on page 5-28

 Assign Multiple MATLAB Functions to Java Class

5-17



Create Java Phone Book Application Using Structure Array
In this example, you create a Java package that calls a MATLAB function to modify a structure array
and implement a phone book application.

Files
MATLAB Function makephone.m
MATLAB Function
Location

matlabroot\toolbox\javabuilder\Examples\PhoneExample
\PhoneDemoComp\

Java Code Location matlabroot\toolbox\javabuilder\Examples\PhoneExample
\PhoneDemoJavaApp\getphone.java

Procedure
1 Copy the PhoneExample folder that ships with MATLAB to your work folder:

copyfile(fullfile(matlabroot,'toolbox','javabuilder','Examples','PhoneExample'),'PhoneExample')

At the MATLAB command prompt, navigate to the new PhoneExample\PhoneDemoComp
subfolder in your work folder.

2 Examine the makephone.m function.
function book = makephone(friends)
book = friends;
for i = 1:numel(friends)
    numberStr = num2str(book(i).phone);
    book(i).external = ['(508) 555-' numberStr];
end

The function takes a structure array as an input, modifies it, and supplies the modified array as
an output.

3 Build the Java package with the Library Compiler app or compiler.build.javaPackage
using the following information:

Field Value
Library Name phonebookdemo
Class Name phonebook
File to Compile makephone.m

For example, if you are using compiler.build.javaPackage, type:
buildResults = compiler.build.javaPackage('makephone.m', ...
'PackageName','phonebookdemo', ...
'ClassName','phonebook');

For more details, see the instructions in “Generate Java Package and Build Java Application”.
4 Write source code for an application that accesses the MATLAB functions.

The sample application for this example is in PhoneExample\PhoneDemoJavaApp
\getphone.java.

getphone.java
/* Necessary package imports */
import com.mathworks.toolbox.javabuilder.*;

5 Sample Java Applications

5-18



import phonebookdemo.*;

/*
 * getphone class demonstrates the use of the MWStructArray class
 */
class getphone
{
    public static void main(String[] args)
    {
        phonebook thePhonebook = null;     /* Stores magic class instance */
        MWStructArray friends = null; /* Sample input data */
        Object[] result = null;    /* Stores the result */
        MWStructArray book = null; /* Output data extracted from result */
        
        try
        {
            /* Create new magic object */
            thePhonebook = new phonebook();
            
            /* Create an MWStructArray with two fields */
            String[] myFieldNames = {"name", "phone"};
            friends = new MWStructArray(2,2,myFieldNames);
            
            /* Populate struct with some sample data --- friends and phone numbers */
            friends.set("name",1,new MWCharArray("Jordan Robert"));
            friends.set("phone",1,3386);
            friends.set("name",2,new MWCharArray("Mary Smith"));
            friends.set("phone",2,3912);
            friends.set("name",3,new MWCharArray("Stacy Flora"));
            friends.set("phone",3,3238);
            friends.set("name",4,new MWCharArray("Harry Alpert"));
            friends.set("phone",4,3077);
            
            /* Show some of the sample data */
            System.out.println("Friends: ");
            System.out.println(friends.toString());
            
            /* Pass it to a MATLAB function that determines external phone number */
            result = thePhonebook.makephone(1, friends);
            book = (MWStructArray)result[0];
            System.out.println("Result: ");
            System.out.println(book.toString());
            
            /* Extract some data from the returned structure */
            System.out.println("Result record 2:");
            System.out.println(book.getField("name",2));
            System.out.println(book.getField("phone",2));
            System.out.println(book.getField("external",2));
            
            /* Print the entire result structure using the helper function below */
            System.out.println("");
            System.out.println("Entire structure:");
            dispStruct(book);
        }
        catch (Exception e)
        {
            System.out.println("Exception: " + e.toString());
        }
        
        finally
        {
            /* Free native resources */
            MWArray.disposeArray(result);
            MWArray.disposeArray(friends);
            MWArray.disposeArray(book);
            if (thePhonebook != null)
                thePhonebook.dispose();
        }
    }
    
    public static void dispStruct(MWStructArray arr) {
        System.out.println("Number of Elements: " + arr.numberOfElements());
        //int numDims = arr.numberOfDimensions();
        int[] dims = arr.getDimensions();
        System.out.print("Dimensions: " + dims[0]);
        for (int i = 1; i < dims.length; i++)
        {
            System.out.print("-by-" + dims[i]);
        }
        System.out.println("");

 Create Java Phone Book Application Using Structure Array

5-19



        System.out.println("Number of Fields: " + arr.numberOfFields());
        System.out.println("Standard MATLAB view:");
        System.out.println(arr.toString());
        System.out.println("Walking structure:");
        java.lang.String[] fieldNames = arr.fieldNames();
        for (int element = 1; element <= arr.numberOfElements(); element++) {
            System.out.println("Element " + element);
            for (int field = 0; field < arr.numberOfFields(); field++) {
                MWArray fieldVal = arr.getField(fieldNames[field], element);
                /* Recursively print substructures, give string display of other classes */
                if (fieldVal instanceof MWStructArray)
                {
                    System.out.println("   " + fieldNames[field] + ": nested structure:");
                    System.out.println("+++ Begin of \"" + 
                                              fieldNames[field] + "\" nested structure");
                    dispStruct((MWStructArray)fieldVal);
                    System.out.println("+++ End of \"" + fieldNames[field] +
                                                                  "\" nested structure");
                } else {
                    System.out.print("   " + fieldNames[field] + ": ");
                    System.out.println(fieldVal.toString());                  
                }
            }
        }
    }
}

The program does the following:

• Creates a structure array, using MWStructArray to represent the example phonebook data.
• Instantiates the plotter class as thePhonebook object:

thePhonebook = new phonebook();
• Calls the makephone method to create a modified copy of the structure by adding an

additional field:

result = thePhonebook.makephone(1, friends);
• Uses a try-catch block to catch and handle any exceptions.

5 In MATLAB, navigate to the PhoneExample\PhoneDemoJavaApp folder.
6 Copy the generated phonebookdemo.jar package into this folder.

• If you used compiler.build.javaPackage, type:
copyfile(fullfile('..','PhoneDemoComp','phonebookdemojavaPackage','phonebookdemo.jar'))

• If you used the Library Compiler, type:
copyfile(fullfile('..','PhoneDemoComp','phonebookdemo','for_testing','phonebookdemo.jar'))

7 In a command prompt window, cd to thePhoneDemoJavaApp folder.
8 Compile the getphone application using javac.

• On Windows, type:
javac -classpath "matlabroot\toolbox\javabuilder\jar\javabuilder.jar";.\phonebookdemo.jar getphone.java

• On UNIX, type:
javac -classpath "matlabroot/toolbox/javabuilder/jar/javabuilder.jar":./phonebookdemo.jar getphone.java

Replace matlabroot with the path to your MATLAB or MATLAB Runtime installation folder. For
example, on Linux, the path may be /usr/local/MATLAB/R2022b.

9 Run the getphone application.

• On Windows, type:
java -classpath .;"matlabroot\toolbox\javabuilder\jar\javabuilder.jar";.\phonebookdemo.jar getphone

• On UNIX, type:
java -classpath .:"matlabroot/toolbox/javabuilder/jar/javabuilder.jar":./phonebookdemo.jar getphone

5 Sample Java Applications

5-20



Note If you are running the application on the Mac 64-bit platform, you must add the -d64
flag in the Java command.

The getphone program displays the following output:

Friends: 
2x2 struct array with fields:
    name
    phone
Result: 
2x2 struct array with fields:
    name
    phone
    external
Result record 2:
Mary Smith
3912
(508) 555-3912

Entire structure:
Number of Elements: 4
Dimensions: 2-by-2
Number of Fields: 3
Standard MATLAB view:
2x2 struct array with fields:
    name
    phone
    external
Walking structure:
Element 1
   name: Jordan Robert
   phone: 3386
   external: (508) 555-3386
Element 2
   name: Mary Smith
   phone: 3912
   external: (508) 555-3912
Element 3
   name: Stacy Flora
   phone: 3238
   external: (508) 555-3238
Element 4
   name: Harry Alpert
   phone: 3077
   external: (508) 555-3077

See Also
libraryCompiler | compiler.build.javaPackage

Related Examples
• “Create Java Application with Multiple MATLAB Functions” on page 5-6

 Create Java Phone Book Application Using Structure Array

5-21



Pass Java Objects to MATLAB

In this section...
“Overview” on page 5-22
“OptimDemo Package” on page 5-22
“Files” on page 5-22
“Procedure” on page 5-23

Overview
This example shows you how to create a Java application that finds a local minimum of an objective
function using the MATLAB optimization function fminsearch and the MWJavaObjectRef class.

In this example, you perform the following steps:

1 Use MATLAB Compiler SDK to create a package that applies MATLAB optimization routines to
objective functions implemented as Java objects.

2 Access the MATLAB functions in a Java application, including use of the MWJavaObjectRef class
to create a reference to a Java object and pass it to the generated Java methods.

3 Build and run the application.

OptimDemo Package
The OptimDemo package finds a local minimum of an objective function and returns the minimal
location and value.

The package uses the MATLAB optimization function fminsearch, and this example optimizes the
Rosenbrock banana function used in the MATLAB fminsearch documentation.

The Optimizer class performs an unconstrained nonlinear optimization on an objective function
implemented as a Java object. A method of this class, doOptim, accepts an initial guess and Java
object that implements the objective function, and returns the location and value of a local minimum.
The second method, displayObj, is a debugging tool that lists the characteristics of a Java object.

The two methods, doOptim and displayObj, encapsulate MATLAB functions.

Files
MATLAB Functions doOptim.m

displayObj.m
MATLAB Function
Location

matlabroot\toolbox\javabuilder\Examples\ObjectRefExample
\ObjectRefDemoComp

Java Code Location matlabroot\toolbox\javabuilder\Examples\ObjectRefExample
\ObjectRefDemoJavaApp

javabuilder.jar matlabroot\toolbox\javabuilder\jar

5 Sample Java Applications

5-22



Procedure
1 Copy the ObjectRefExample folder that ships with MATLAB to your work folder:

copyfile(fullfile(matlabroot,'toolbox','javabuilder','Examples','ObjectRefExample'),'ObjectRefExample')

At the MATLAB command prompt, navigate to the new ObjectRefExample
\ObjectRefDemoComp subfolder in your work folder.

2 Examine the MATLAB code you want to access from Java. This example uses doOptim.m and
displayObj.m.

function [x,fval] = doOptim(h, x0)
directEval = h.evaluateFunction(x0)
wrapperEval = mWrapper(x0)
[x,fval] = fminsearch(mWrapper,x0)

function className = displayObj(h)
h
className = class(h)
whos('h')
methods(h)

3 Build the Java package with the Library Compiler app or compiler.build.javaPackage
using the following information:

Field Value
Library Name OptimDemo
Class Name Optimizer
Files to Compile doOptim.m

displayObj.m

For example, if you are using compiler.build.javaPackage, type:
buildResults = compiler.build.javaPackage(["doOptim.m","displayObj.m"], ...
'PackageName','OptimDemo', ...
'ClassName','Optimizer');

For more details, see the instructions in “Generate Java Package and Build Java Application”.
4 Write source code for a class that implements an object function to optimize. The code for this

example is in the file BananaFunction.java.

BananaFunction.java
public class BananaFunction {
    public BananaFunction() {}
    public double evaluateFunction(double[] x)
    {
        /* Implements the Rosenbrock banana function described in 
         * the FMINSEARCH documentation
         */
        double term1 = 100*java.lang.Math.pow((x[1]-Math.pow(x[0],2.0)),2.0); 
        double term2 =  Math.pow((1-x[0]),2.0);
        return term1 + term2;
    }
}

The class implements the Rosenbrock banana function described in the MATLAB fminsearch
documentation.

5 Write source code for an application that accesses the MATLAB functions. The code for this
example is in the file PerformOptim.java.

 Pass Java Objects to MATLAB

5-23



PerformOptim.java

/* Necessary package imports */
import com.mathworks.toolbox.javabuilder.*;
import OptimDemo.*;
/*
 * Demonstrates the use of the MWJavaObjectRef class
 * Takes initial point for optimization as two arguments:
 *    PerformOptim -1.2 1.0
 */
class PerformOptim
{
    public static void main(String[] args)
    {
        Optimizer theOptimizer = null;        /* Stores component 
                                       instance */
        MWJavaObjectRef origRef = null;    /* Java object reference to 
                                     be passed to component */
        MWJavaObjectRef outputRef = null;    /* Output data extracted 
                                        from result */
        MWNumericArray x0 = null;    /* Initial point for optimization */
        MWNumericArray x = null;    /* Location of minimal value */
        MWNumericArray fval = null;    /* Minimal function value */
        Object[] result = null;    /* Stores the result */

        try
        {
            /* If no input, exit */
            if (args.length < 2)
            {
                System.out.println("Error: must input initial x0_1 
                                            and x0_2 position");
                return;
            }

            /* Instantiate a new Java object */
            /* This should only be done once per application instance */
            theOptimizer = new Optimizer();

            try {
                /* Initial point --- parse data from text fields */
                double[] x0Data = new double[2];
                x0Data[0] = Double.valueOf(args[0]).doubleValue();
                x0Data[1] = Double.valueOf(args[1]).doubleValue();
                x0 = new MWNumericArray(x0Data, MWClassID.DOUBLE);
                System.out.println("Using x0 =");
                System.out.println(x0);

                /* Create object reference to objective function object */
                BananaFunction objectiveFunction = new BananaFunction();
                origRef = new MWJavaObjectRef(objectiveFunction);

                /* Pass Java object to a MATLAB function that lists its 
                              methods, etc */            
                System.out.println("*********************************");
                System.out.println("** Properties of Java object   **");
                System.out.println("*********************************");
                result = theOptimizer.displayObj(1, origRef);     

5 Sample Java Applications

5-24



                MWArray.disposeArray(result);
                System.out.println("** Finished DISPLAYOBJ **********");

                /* Call the Java component to optimize the function */
                /* using the MATLAB function FMINSEARCH */
                System.out.println("**********************************");
                System.out.println("** Unconstrained nonlinear optim**");
                System.out.println("**********************************");
                result = theOptimizer.doOptim(2, origRef, x0);
                try {
                    System.out.println("** Finished DOOPTIM ****** *********");
                    x = (MWNumericArray)result[0];
                    fval = (MWNumericArray)result[1];

                    /* Display the results of the optimization */
                    System.out.println("Location of minimum: ");
                    System.out.println(x);
                    System.out.println("Function value at minimum: ");
                    System.out.println(fval.toString());
                }
                finally
                {
                    MWArray.disposeArray(result);
                }
            }
            finally
            {
                /* Free native resources */
                MWArray.disposeArray(origRef);
                MWArray.disposeArray(outputRef);
                MWArray.disposeArray(x0);
            }
        }
        catch (Exception e)
        {
            System.out.println("Exception: " + e.toString());
        }

        finally
        {
            /* Free native resources */
            if (theOptimizer != null)
                theOptimizer.dispose();
        }
    }
}

The program does the following:

• Instantiates an object of the BananaFunction class above to be optimized.
• Creates an MWJavaObjectRef that references the BananaFunction object, as shown:

origRef = new MWJavaObjectRef(objectiveFunction);

.
• Instantiates an Optimizer object.

 Pass Java Objects to MATLAB

5-25



• Calls the displayObj method to verify that the Java object is being passed correctly.
• Calls the doOptim method, which uses fminsearch to find a local minimum of the objective

function.
• Uses a try/catch block to handle exceptions.
• Frees native resources using MWArray methods.

6 In MATLAB, navigate to the ObjectRefDemoJavaApp folder.
7 Copy the generated OptimDemo.jar package into this folder.

• If you used compiler.build.javaPackage, type:
copyfile(fullfile('..','ObjectRefDemoComp','OptimDemojavaPackage','OptimDemo.jar'))

• If you used the Library Compiler, type:
copyfile(fullfile('..','ObjectRefDemoComp','OptimDemo','for_testing','OptimDemo.jar'))

8 Open a command prompt window and navigate to the ObjectRefDemoJavaApp folder where
you copied OptimDemo.jar.

9 Compile the PerformOptim.java application and BananaFunction.java helper class using
javac.

• Windows

To compile BananaFunction.java, type:
javac -classpath "matlabroot\toolbox\javabuilder\jar\javabuilder.jar";.\OptimDemo.jar BananaFunction.java

To compile PerformOptim.java, type:
javac -classpath "matlabroot\toolbox\javabuilder\jar\javabuilder.jar";.\OptimDemo.jar PerformOptim.java

• UNIX

To compile BananaFunction.java, type:
javac -classpath "matlabroot/toolbox/javabuilder/jar/javabuilder.jar":./OptimDemo.jar BananaFunction.java

To compile PerformOptim.java, type:
javac -classpath "matlabroot/toolbox/javabuilder/jar/javabuilder.jar":./OptimDemo.jar PerformOptim.java

Replace matlabroot with the path to your MATLAB or MATLAB Runtime installation folder. For
example, on Windows, the path may be C:\Program Files\MATLAB\R2022b.

10 Run the PerformOptim application.

On Windows, type:
java -classpath .;"matlabroot\toolbox\javabuilder\jar\javabuilder.jar";.\OptimDemo.jar PerformOptim -1.2 1.0

On Linux, type:
java -classpath .:"matlabroot/toolbox/javabuilder/jar/javabuilder.jar":.\OptimDemo.jar PerformOptim -1.2 1.0

Note If you are running the application on the Mac 64-bit platform, you must add the -d64 flag
in the Java command.

The PerformOptim program displays the following output:

Using x0 =
-1.2000    1.0000
*****************************************************
** Properties of Java object                       **

5 Sample Java Applications

5-26



*****************************************************
 
h =
 
BananaFunction@1766806
 
className =
 
BananaFunction
 
  Name      Size            Bytes  Class             Attributes
 
  h         1x1                    BananaFunction              
 
Methods for class BananaFunction:
 
 BananaFunction    getClass          notifyAll         
equals            hashCode          toString          
evaluateFunction  notify            wait              
 
** Finished DISPLAYOBJ ******************************
*****************************************************
** Performing unconstrained nonlinear optimization **
*****************************************************
 
directEval =
 
   24.2000
 
 wrapperEval =
 
   24.2000
 
 x =
 
    1.0000    1.0000
 
 fval =
 
   8.1777e-10
 
Optimization successful
** Finished DOOPTIM *********************************
Location of minimum: 
1.0000    1.0000
Function value at minimum: 
8.1777e-10

See Also
libraryCompiler | compiler.build.javaPackage

Related Examples
• “Block Console Display When Creating Figures in Java” on page 2-39

 Pass Java Objects to MATLAB

5-27



Use MATLAB Class in Java Application
In this section...
“Overview” on page 5-28
“Procedure” on page 5-28

Overview
This example shows you how to create a Java application that calls MATLAB wrapper functions for a
MATLAB class.

In this example, you perform the following steps:

1 Use MATLAB Compiler SDK to create a package that uses MATLAB wrapper functions to access
a MATLAB class.

2 Call the MATLAB wrapper functions in a Java application.
3 Build and run the application.

Procedure
1 In MATLAB, examine the MATLAB code that you want to package. For this example, create a

MATLAB class named MyMATLABClass.m using the following code:

classdef MyMatlabClass < handle
    
    properties (Access = private)
        x % input variable
        y % input variable
        z % result variable
    end
    
    methods
        function this = MyMatlabClass()
            this.x = []; this.y = [];
        end
        
        function setInput(this, input)
            input = input(:);           
            if isnumeric(input) && numel(input) == 2
                this.x = input(1);
                this.y = input(2);
            end
        end
        
        function result = getResult(this)
            result = this.z;
        end
        
        function status = compute(this)
            try
                this.z = (this.x.^2 + this.y.^2)^0.5;
                status = true;
            catch

5 Sample Java Applications

5-28



                status = false;
            end
        end
    end
    
end

2 Create four MATLAB wrapper functions for the class: CreateMyMATLABClass.m, SetInput.m,
Compute.m, and GetResult.m.

CreateMyMATLABClass.m.   
function instance = CreateMyMATLABClass()
    instance = MyMATLABClass();
end

3 Build the Java package with the Library Compiler app or compiler.build.javaPackage
using the following information:

Field Value
Library Name MyMATLABClass1
Class Name Class1
Files to Compile CreateMyMATLABClass.m

SetInput.m
Compute.m
GetResult.m

For example, if you are using compiler.build.javaPackage, type:
buildResults = compiler.build.javaPackage(["CreateMyMATLABClass.m", ...
"SetInput.m","Compute.m","GetResult.m"], ...
'PackageName','MyMATLABClass1', ...
'ClassName','Class1');

For more details, see the instructions in “Generate Java Package and Build Java Application”.

Note You do not need to manually add the MyMATLABClass.m file to the package, as the
compiler automatically includes it during dependency analysis.

4 Navigate to the folder that contains the generated MyMATLABClass1.jar package. If you used
the Library Compiler, the package is in the for_testing folder.

5 Write source code for an application that accesses the MATLAB functions. The code for this
example is provided below.

javadriver.java

/* Necessary package imports */
import com.mathworks.toolbox.javabuilder.*;
import java.util.*;
import MyMATLABClass.*;

class javadriver
{
    public static void main(String[] args)
    {
        try
        {            
            System.out.println("--- USE: Constructors ---");
            /* Instantiate a new Java object */

 Use MATLAB Class in Java Application

5-29



            /* This should only be done once per application instance */
            MyMATLABClass1.Class1 obj = new MyMATLABClass1.Class1();
            
            Object[] a = obj.CreateMyMATLABClass(1);
            obj.SetInput(a[0],new double[]{1,2});
            Object[] b = obj.Compute(1,a[0]);
            System.out.println( (MWLogicalArray) b[0]);
            Object[] c = obj.GetResult(1, a[0]);
            System.out.println((MWNumericArray)c[0]);        
            System.out.println("--- Done. ---");
        }
        catch (Exception e)
        {
        System.out.println("Exception: " + e.toString());
        }        
        finally
        {
        }
    }
}

6 Open a command prompt window and navigate to the folder that contains javadriver.java
and MyMATLABClass.jar.

7 Compile the javadriver.java application using javac.

• On Windows, type:
javac -classpath "matlabroot\toolbox\javabuilder\jar\javabuilder.jar";.\MyMATLABClass.jar javadriver.java

• On UNIX, type:
javac -classpath "matlabroot/toolbox/javabuilder/jar/javabuilder.jar":./MyMATLABClass.jar javadriver.java

Replace matlabroot with the path to your MATLAB or MATLAB Runtime installation folder. For
example, on Linux, the path may be /usr/local/MATLAB/R2022b.

8 Run the javadriver application.

On Windows, type:
java -classpath .;"matlabroot\toolbox\javabuilder\jar\javabuilder.jar";.\MyMATLABClass.jar javadriver

On Linux, type:
java -classpath .:"matlabroot/toolbox/javabuilder/jar/javabuilder.jar":.\MyMATLABClass.jar javadriver

Note If you are running the application on the Mac 64-bit platform, you must add the -d64 flag
in the Java command.

The javadriver program displays the following output:

--- USE: Constructors --- 
1 
2.2361 
--- Done. --- 

See Also
libraryCompiler | compiler.build.javaPackage

5 Sample Java Applications

5-30



Related Examples
• “Pass Java Objects to MATLAB” on page 5-22

 Use MATLAB Class in Java Application

5-31





Working with MATLAB Figures and
Images

• “Roles in Working with Figures and Images” on page 6-2
• “Render MATLAB Image Data in Java” on page 6-3

6



Roles in Working with Figures and Images
When you work with figures and images as a MATLAB programmer, you are responsible for:

• Preparing a MATLAB figure for export
• Making changes to the figure (optional)
• Exporting the figure
• Cleaning up the figure window

When you work with figures and images as a front-end Web developer, some of the tasks you are
responsible for include:

• Getting a WebFigure from a deployed component
• Getting raw image data from a deployed component converted into a byte array
• Getting a buffered image from a component
• Getting a buffered image or a byte array from a WebFigure

6 Working with MATLAB Figures and Images

6-2



Render MATLAB Image Data in Java
This section contains code snippets intended to demonstrate specific functionality related to working
with figure and image data.

Working with Images
Get Encoded Image Bytes from Image in Component

public byte[] getByteArrayFromDeployedComponent()
{
    Object[] byteImageOutput = null;
    MWNumericArray numericImageByteArray = null;
    try
    {
        byteImageOutput =
            deployment.getImageDataOrientation(
                1,      //Number Of Outputs    
                500,    //Height
                500,    //Width
                30,     //Elevation
                30,     //Rotation
                "png"   //Image Format
            );
        
        numericImageByteArray = 
              (MWNumericArray)byteImageOutput[0];
        return numericImageByteArray.getByteData();
    }
    finally
    {
        MWArray.disposeArray(byteImageOutput);
    }
}

Get Buffered Image in Component

public byte[] getByteArrayFromDeployedComponent()
{
    Object[] byteImageOutput = null;
    MWNumericArray numericImageByteArray = null;
    try
    {
        byteImageOutput =
            deployment.getImageDataOrientation(
                1,      //Number Of Outputs    
                500,    //Height
                500,    //Width
                30,     //Elevation
                30,     //Rotation
                "png"   //Image Format
            );
        
        numericImageByteArray = 
                 (MWNumericArray)byteImageOutput[0];
        return numericImageByteArray.getByteData();

 Render MATLAB Image Data in Java

6-3



    }
    finally
    {
        MWArray.disposeArray(byteImageOutput);
    }
}

public BufferedImage getBufferedImageFromDeployedComponent()
{
    try
    {
        byte[] imageByteArray = 
               getByteArrayFromDeployedComponent()
        return ImageIO.read
                (new ByteArrayInputStream(imageByteArray));
    }
    catch(IOException io_ex)
    {
        io_ex.printStackTrace();
    }
}

Create Buffered Images from MATLAB Array
Use the renderArrayData method to:

• Create a buffered image from data in a given MATLAB array.
• Verify the array is of three dimensions (height, width, and color component).
• Verify the color component order is red, green, and blue.

See renderArrayData in the Java API documentation for information on input parameters,
return values, exceptions thrown, and examples.

See Also

Related Examples
• “Block Console Display When Creating Figures in Java” on page 2-39
• “Create Java Application with Multiple MATLAB Functions” on page 5-6
• “Display MATLAB Plot in Java Application” on page 5-2

6 Working with MATLAB Figures and Images

6-4



Creating Scalable Web Applications
Using RMI

• “Remote Method Invocation for Client-Server Applications” on page 7-2
• “Run Client and Server Using RMI” on page 7-3
• “Represent Native Java Cell and Struct Arrays” on page 7-7

7



Remote Method Invocation for Client-Server Applications
You can expand your application's throughput capacity by taking advantage of Remote Method
Invocation (RMI), the Java native remote procedure call (RPC) mechanism. The way MATLAB
Compiler SDK implements RMI technology to automatically generate interface code that enables
components to start in separate processes on one or more computers, making your applications
scalable and adaptable to future performance demands.

You can use RMI in the following ways:

• Run a client and server on a single machine.
• Run a client and server on separate machines.

See Also

Related Examples
• “Run Client and Server Using RMI” on page 7-3
• “Represent Native Java Cell and Struct Arrays” on page 7-7

7 Creating Scalable Web Applications Using RMI

7-2



Run Client and Server Using RMI
This example shows how to implement RMI to run two separate processes that initialize MATLAB
struct arrays. The client and the server run on the same machine.

To implement RMI with a client on one machine and a server on another, use the procedure in this
example and:

1 Change how the server is bound to the system registry.
2 Redefine how the client accesses the server.

RMI Prerequisites
To run this example, your environment must meet the following prerequisites:

• Install MATLAB Compiler SDK on the development machine.
• Install a supported version of the Java Development Kit (JDK) on the development machine. For

more information, see “Configure Your Environment for Generating Java Packages” on page 1-3.
• Install MATLAB Runtime on the web server. For details, see “Install and Configure MATLAB

Runtime”.
• Ensure that your web server is capable of running accepted Java frameworks like J2EE.
• Install the javabuilder.jar library (matlabroot/toolbox/javabuilder/jar/

javabuilder.jar) into your web server’s common library folder.

If your implementation uses separate client machines, they also need javabuilder.jar, since it
contains the com.mathworks.extern.java package.

Note You do not need MATLAB Runtime installed on the client side. Return values from MATLAB
Runtime can be automatically converted using the boolean marshalOutputs in the RemoteProxy
class. For details, see the Javadoc API documentation in matlabroot/help/toolbox/
javabuilder/MWArrayAPI.

Files
MATLAB Function
Location

matlabroot\toolbox\javabuilder\Examples\RMIExamples
\DataTypes\DataTypesDemoComp

Java Code Location matlabroot\toolbox\javabuilder\Examples\RMIExamples
\DataTypes\DataTypesDemoJavaApp

Procedure
1 Copy the DataTypes folder from MATLAB to your work folder:

copyfile(fullfile(matlabroot,'toolbox','javabuilder','Examples','RMIExamples','DataTypes'))

At the MATLAB command prompt, navigate to the new DataTypes\DataTypesDemoComp
subfolder in your work folder.

2 Examine the MATLAB functions createEmptyStruct.m and updateField.m.

 Run Client and Server Using RMI

7-3



createEmptyStruct.m
function PartialStruct = createEmptyStruct(field_names)

fprintf('EVENT 1: Initializing the structure in MATLAB and sending it to JAVA client:\n');

PartialStruct = struct();

for i=1:length(field_names)
    PartialStruct.(field_names{i}) = [];    
end

fprintf('         Initialized empty structure:\n\n');
disp(PartialStruct);
fprintf('\n##################################\n');

updateField.m
function FinalStruct = updateField(st,field_name)

fprintf('\nEVENT 3: Partially initialized structure as received by MATLAB:\n\n');
disp(st);
fprintf('Address field as initialized from the client:\n\n');
disp(st.Address);
fprintf('##################################\n');

fprintf(['\nEVENT 4: Updating ''', field_name, ''' field before sending the structure back to the JAVA client:\n\n']);
st.(field_name) = 'MathWorks';
FinalStruct = st;
disp(FinalStruct);
fprintf('\n##################################\n');

3 Generate the Java package using compiler.build.javaPackage by issuing the following
command at the MATLAB command prompt:
compiler.build.javaPackage({'createEmptyStruct.m','updateField.m'}, ...
    'PackageName','dataTypesComp', ...
    'ClassName','dataTypesClass', ...
    'Verbose','on');

For more details, see the instructions in “Generate Java Package and Build Java Application”.
4 At your system command prompt, navigate to the DataTypes\DataTypesDemoJavaApp folder.

Compile the server Java code by issuing one of the following javac commands at your system
command prompt.

• On Windows, type:

javac -classpath
 "matlabroot\toolbox\javabuilder\jar\javabuilder.jar;path\to\dataTypesComp.jar"
 DataTypesServer.java 

• On UNIX, type:

javac -classpath
 "matlabroot/toolbox/javabuilder/jar/javabuilder.jar:path/to/dataTypesComp.jar"
 DataTypesServer.java

Note Replace matlabroot with the path to your MATLAB or MATLAB Runtime installation
folder.

5 Compile the client Java code by issuing one of the following javac commands at your system
command prompt.

• On Windows, type:
javac -classpath
 "matlabroot\toolbox\javabuilder\jar\javabuilder.jar;path\to\dataTypesComp.jar
 DataTypesClient.java

7 Creating Scalable Web Applications Using RMI

7-4



• On UNIX, type:
javac -classpath
 "matlabroot/toolbox/javabuilder/jar/javabuilder.jar:path/to/dataTypesComp.jar"
 DataTypesClient.java

Run Client and Server
Run the client and server as follows:

1 Open two command windows—one for the server and one for the client.
2 In each window, navigate to the folder that contains DataTypesServer.java or

DataTypesClient.java, respectively.
3 Run the server by issuing one of the following java commands in a single line at the system

command prompt.

• On Windows, type:
java -classpath
 .;"path\to\dataTypesComp.jar;matlabroot\toolbox\javabuilder\jar\javabuilder.jar"
 -Djava.rmi.server.codebase="file:///matlabroot\toolbox\javabuilder\jar\javabuilder.jar
 file:///path\to\dataTypesComp.jar" DataTypesServer

• On UNIX, type:
java -classpath
 .:"path/to/dataTypesComp.jar;matlabroot/toolbox/javabuilder/jar/javabuilder.jar"
 -Djava.rmi.server.codebase="file:///matlabroot/toolbox/javabuilder/jar/javabuilder.jar
 file:///path/to/dataTypesComp.jar" DataTypesServer

4 In the second command window, run the client by issuing one of the following java commands in
a single line.

• On Windows, type:

java -classpath
 .;"path/to/\dataTypesComp.jar;matlabroot\toolbox\javabuilder\jar\javabuilder.jar"
 DataTypesClient

• On UNIX, type:
java -classpath
 .:"path/to/dataTypesComp.jar;matlabroot/toolbox/javabuilder/jar/javabuilder.jar"
 -Djava.rmi.server.codebase="file:///matlabroot/toolbox/javabuilder/jar/javabuilder.jar
 file:///path/to/dataTypesComp.jar" DataTypesClient

If the commands are successful, the following output appears in the command window running the
server:
Please wait for the server registration notification.            
            Server registered and running successfully!!

            EVENT 1: Initializing the structure on server
                     and sending it to client:
                     Initialized empty structure:

                   Name: []
                Address: []

            ##################################

            EVENT 3: Partially initialized structure as received by server:

                   Name: []
                Address: [1x1 struct]

            Address field as initialized from the client:

 Run Client and Server Using RMI

7-5



                Street: '3, Apple Hill Drive'
                  City: 'Natick'
                 State: 'MA'
                   Zip: '01760'

            ##################################

            EVENT 4: Updating 'Name' field before 
                     sending the structure back to the client:

                  Name: 'The MathWorks'
               Address: [1x1 struct]

            ##################################

The following output appears in the command window running the client:
 Running the client application!!

            EVENT 2: Initialized structure as received in client applications:

                   Name: []
                Address: []

            Updating the 'Address' field to :

                Street: '3, Apple Hill Drive'
                  City: 'Natick'
                 State: 'MA'
                   Zip: '01760'

            #################################

            EVENT 5: Final structure as received by client:

                   Name: 'The MathWorks'
                Address: [1x1 struct]

            Address field:

                Street: '3, Apple Hill Drive'
                  City: 'Natick'
                 State: 'MA'
                   Zip: '01760'

            #################################

Note For more examples of RMI implementation, see the files in matlabroot/toolbox/
javabuilder/Examples/RMIExamples.

See Also

Related Examples
• “Remote Method Invocation for Client-Server Applications” on page 7-2
• “Represent Native Java Cell and Struct Arrays” on page 7-7

7 Creating Scalable Web Applications Using RMI

7-6



Represent Native Java Cell and Struct Arrays
Java has no direct representation available for MATLAB struct arrays and cell arrays. As a result,
when an instance of MWStructArray or MWCellArray is converted to a Java native type using the
toArray() method, the output is a multidimensional Object array, which can be difficult to process.

When you use MATLAB Compiler SDK packages with RMI, you have control over how the server
sends the results of MATLAB function calls back to the client. The server can be set to marshal the
output to the client as an MWArray (com.mathworks.toolbox.javabuilder package) subtype, or
as a Java native data type. The Java native data type representation of MWArray subtypes is obtained
by invoking the toArray() method by the server.

You can use Java native representations of MATLAB struct and cell arrays if both of these conditions
are true:

• You have MATLAB functions on a server with MATLAB struct or cell data types as inputs or
outputs

• You do not want to install MATLAB Runtime on your client machines

The classes in the com.mathworks.extern.java package (in javabuilder.jar) do not need
MATLAB Runtime. The names of the classes in this package are the same as those in
com.mathworks.toolbox.javabuilder — allowing you to easily create instances of
com.mathworks.extern.java.MWStructArray or
com.mathworks.extern.java.MWCellArray that work the same as the like-named classes in
com.mathworks.toolbox.javabuilder — on a machine that does not have MATLAB Runtime.

Since the MWArray class hierarchy can be used only with MATLAB Runtime, if the client machine
does not have MATLAB Runtime available, the server returns the output of toArray() for struct or
cell arrays as instances of com.mathworks.extern.java.MWStructArray or
com.mathworks.extern.java.MWCellArray, respectively.

Prerequisites
To run this example, your environment must meet the following prerequisites:

• Install MATLAB Compiler SDK on the development machine.
• Install a supported version of the Java Development Kit (JDK) on the development machine. For

more information, see “Configure Your Environment for Generating Java Packages” on page 1-3.
• Install MATLAB Runtime on the web server. For details, see “Install and Configure MATLAB

Runtime”.
• Ensure that your web server is capable of running accepted Java frameworks like J2EE.
• Install the javabuilder.jar library (matlabroot/toolbox/javabuilder/jar/

javabuilder.jar) into your web server’s common library folder.

If your implementation has separate client machines, they also need javabuilder.jar, since it
contains the com.mathworks.extern.java package.

Note You do not need MATLAB Runtime installed on the client side. Return values from the MATLAB
Runtime can be automatically converted using the boolean marshalOutputs in the RemoteProxy
class. For details, see the Java API documentation in matlabroot/help/toolbox/javabuilder/
MWArrayAPI.

 Represent Native Java Cell and Struct Arrays

7-7



Procedure
<listitem>
Copy the NativeCellStruct folder from MATLAB to your work folder:
copyfile(fullfile(matlabroot,'toolbox','javabuilder','Examples','RMIExamples','NativeCellStruct'))

At the MATLAB command prompt, navigate to the new NativeCellStruct
\NativeCellStructDemoComp subfolder in your work folder.
</listitem>
<listitem>
Examine the MATLAB functions createEmptyStruct.m and updateField.m.

createEmptyStruct.m
function PartialStruct = createEmptyStruct(field_names)

fprintf('EVENT 1: Initializing the structure on server and sending it to client:\n');

PartialStruct = struct(field_names{1},' ',field_names{2},[]);

fprintf('         Initialized empty structure:\n\n');
disp(PartialStruct);
fprintf('\n##################################\n');

updateField.m
function FinalStruct = updateField(st,field_name)

fprintf('\nEVENT 3: Partially initialized structure as received by server:\n\n');
disp(st);
fprintf('Address field as initialized from the client:\n\n');
disp(st.Address);
fprintf('##################################\n');

fprintf(['\nEVENT 4: Updating ''', field_name, ''' field before sending the structure back to the client:\n\n']);
st.(field_name) = 'MathWorks';
FinalStruct = st;
disp(FinalStruct);
fprintf('\n##################################\n');

</listitem>
<listitem>
Generate the Java package using compiler.build.javaPackage by issuing the following
command at the MATLAB command prompt:
compiler.build.javaPackage({'createEmptyStruct.m','updateField.m'}, ...
    'PackageName','nativeCellStructComp', ...
    'ClassName','nativeCellStructClass', ...
    'Verbose','on');

For more details, see the instructions in “Generate Java Package and Build Java Application”.
</listitem>
<listitem>
At your system command prompt, navigate to the NativeCellStruct
\NativeCellStructDemoJavaApp folder.

Compile the server Java code by issuing one of the following javac commands at your system
command prompt.

• On Windows, type:
javac -classpath
 "matlabroot\toolbox\javabuilder\jar\javabuilder.jar;path\to\nativeCellStructComp.jar"
 NativeCellStructServer.java

• On UNIX, type:

7 Creating Scalable Web Applications Using RMI

7-8



javac -classpath
 "matlabroot/toolbox/javabuilder/jar/javabuilder.jar:path/to/nativeCellStructComp.jar"
 NativeCellStructServer.java

Note Replace matlabroot with the path to your MATLAB or MATLAB Runtime installation folder.

</listitem>
<listitem>
Compile the client Java code by issuing one of the following javac commands at your system
command prompt.

• On Windows, type:
javac -classpath
 "matlabroot\toolbox\javabuilder\jar\javabuilder.jar;path\to\dataTypesComp.jar
 NativeCellStructClient.java

• On UNIX, type:
javac -classpath
 "matlabroot/toolbox/javabuilder/jar/javabuilder.jar:path/to/dataTypesComp.jar"
 NativeCellStructClient.java

</listitem>
<listitem>
Prepare to run the server and client applications by opening two command windows—one for the
client and one for the server.
</listitem>
<listitem>
Run the server by issuing one of the following java commands in a single line at the system
command prompt.

• On Windows, type:
java -classpath
 .;"path\to\dataTypesComp.jar;matlabroot\toolbox\javabuilder\jar\javabuilder.jar"
 -Djava.rmi.server.codebase="file:///matlabroot\toolbox\javabuilder\jar\javabuilder.jar
 file:///path\to\dataTypesComp.jar"
 NativeCellStructServer

• On UNIX, type:
java -classpath
 .:"path/to/dataTypesComp.jar;matlabroot/toolbox/javabuilder/jar/javabuilder.jar"
 -Djava.rmi.server.codebase="file:///matlabroot/toolbox/javabuilder/jar/javabuilder.jar
 file:///path/to/dataTypesComp.jar"
 NativeCellStructServer

</listitem>
<listitem>
In the second command window, run the client by issuing one of the following java commands in a
single line.

• On Windows, type:

java -classpath
 .;"path/to/\dataTypesComp.jar;matlabroot\toolbox\javabuilder\jar\javabuilder.jar"
 NativeCellStructClient

• On UNIX, type:
java -classpath
 .:"path/to/dataTypesComp.jar;matlabroot/toolbox/javabuilder/jar/javabuilder.jar"
 -Djava.rmi.server.codebase="file:///matlabroot/toolbox/javabuilder/jar/javabuilder.jar
 file:///path/to/dataTypesComp.jar"
 NativeCellStructClient

 Represent Native Java Cell and Struct Arrays

7-9



</listitem>

If the commands are successful, the following output appears in the command window running the
server:

 Please wait for the server registration notification.
            Server registered and running successfully!!

            EVENT 1: Initializing the structure on server and 
                     sending it to client:
                     Initialized empty structure:

                     Name: ' '
                     Address: []

            ##################################

            EVENT 3: Partially initialized structure as received 
                                                     by server:

                     Name: ' '
                     Address: [1x1 struct]

               Address field as initialized from the client:

                     Street: '3, Apple Hill Drive'
                     City: 'Natick'
                     State: 'MA'
                     Zip: '01760'

            ##################################

            EVENT 4: Updating 'Name' field before sending the 
                     structure back to the client

                     Name: 'The MathWorks'
                     Address: [1x1 struct]

            ##################################

   

The following output appears in the command window running the client:

Running the client application!!

            EVENT 2: Initialized structure as received in client 
                                                    applications:

                     1x1 struct array with fields:
                        Name
                        Address

                Updating the 'Address' field to :

7 Creating Scalable Web Applications Using RMI

7-10



                     1x1 struct array with fields:
                        Street
                        City
                        State
                        Zip

            #################################

            EVENT 5: Final structure as received by client:

                     1x1 struct array with fields:
                        Name
                        Address

                Address field:

                     1x1 struct array with fields:
                        Street
                        City
                        State
                        Zip

            #################################

 Represent Native Java Cell and Struct Arrays

7-11





Troubleshooting

8



Common Failure Messages
Exception in thread "main" java.lang.UnsatisfiedLinkError: Failed to find the library
mclmcrrt712.dll, required by MATLAB Compiler SDK, on java.library.path

Install the MATLAB Runtime or add it to the MATLAB path.

Failed to find the library <library_name>, required by MATLAB Compiler SDK, on
java.library.path.

This error commonly occurs on Linux or Mac systems if the LD_LIBRARY_PATH or
DYLD_LIBRARY_PATH variable is not set. For more information, see “Set MATLAB Runtime Path for
Deployment”.

javac is not recognized as an internal or external command, operable program or batch
file.

This is a common error when the javac executable (javac.exe), installed with Java, is not on your
system PATH.

Edit your system environment variables and add your Java installation folder to the PATH variable.

Java packages generated using the LibraryCompiler app that serialize and deserialize
MathWorks Java classes will throw an exception or hang when using serialization filtering
in Java 8.

MathWorks® Java classes need to be on the filter pattern list of the serialization filtering feature of
Java 8 so that they can be passed to the method java.io.ObjectInputStream.filterCheck().
This will prevent an application using the Java package from throwing an exception or from hanging.
To fix the issue, set the following system properties at the command line:

jdk.serialFilter=com.mathworks.** 
sun.rmi.registry.registryFilter=com.mathworks.**

8 Troubleshooting

8-2



Reference Information for Java

• “Requirements and Limitations of MATLAB Compiler SDK Java Target” on page 9-2
• “Rules for Data Conversion Between Java and MATLAB” on page 9-3
• “Programming Interfaces Generated by MATLAB Compiler SDK” on page 9-8
• “Share MATLAB Runtime Instances” on page 9-11

9



Requirements and Limitations of MATLAB Compiler SDK Java
Target

In this section...
“System Requirements” on page 9-2
“Limitations of MATLAB Compiler SDK Java Target” on page 9-2
“Path Modifications Required for Accessibility” on page 9-2

System Requirements
System requirements and restrictions on use of the MATLAB Compiler SDK Java target are as follows:

• You must have MATLAB Compiler SDK installed.
• Your Java environment must be properly configured. For details, see “Configure Your Environment

for Generating Java Packages” on page 1-3.
• Your end users must have MATLAB or MATLAB Runtime installed to run compiled MATLAB code.

Limitations of MATLAB Compiler SDK Java Target
Consider the following limitations when creating Java packages using MATLAB Compiler SDK:

• Special characters in MATLAB comments can cause compilation to fail. Remove special characters
or replace them with XML characters. For example, "<" can be replaced with "&lt;".

• JAR files created by MATLAB Compiler SDK cannot be loaded back into MATLAB with the
MATLAB Java External Interface.

Path Modifications Required for Accessibility
In order to use some screen-readers or assistive technologies, such as JAWS, you must add the
following DLLs to your Windows path:

matlabroot\sys\java\jre\arch\jre\bin\JavaAccessBridge.dll
matlabroot\sys\java\jre\arch\jre\bin\WindowsAccessBridge.dll

You may not be able to use such technologies without doing so.

9 Reference Information for Java

9-2



Rules for Data Conversion Between Java and MATLAB
In this section...
“Java to MATLAB Conversion” on page 9-3
“MATLAB to Java Conversion” on page 9-4
“Unsupported MATLAB Array Types” on page 9-7

Java to MATLAB Conversion
The following table lists the data conversion rules for converting Java data types to MATLAB types.
The conversion rules apply to scalars, vectors, matrices, and multidimensional arrays of the types
listed.

The rules apply not only when calling your own methods, but also when calling constructors and
factory methods belonging to the MWArray classes.

Note When you call an MWArray class method constructor, supplying a specific data type causes the
compiler to convert to that type instead of the default.

 Rules for Data Conversion Between Java and MATLAB

9-3



Java to MATLAB Conversion Rules

Java Type MATLAB Type
double double
float single
byte int8
int int32
short int16
long int64
char char
boolean logical
java.lang.Double double
java.lang.Float single
java.lang.Byte int8
java.lang.Integer int32
java.lang.Long int64
java.lang.Short int16
java.lang.Number double

Note Subclasses of java.lang.Number not listed above are converted
to double.

java.lang.Boolean logical
java.lang.Character char
java.lang.String char

Note A Java string is converted to a 1-by-N array of char with N equal to
the length of the input string.

An array of Java strings (String[]) is converted to an M-by-N array of
char, with M equal to the number of elements in the input array and N
equal to the maximum length of any of the strings in the array.

Higher dimensional arrays of String are converted similarly.

In general, an N-dimensional array of String is converted to an N+1
dimensional array of char with appropriate zero padding where supplied
strings have different lengths.

MATLAB to Java Conversion
The following table lists the data conversion rules for converting MATLAB data types to Java types.

9 Reference Information for Java

9-4



Note The conversion rules apply to scalars, vectors, matrices, and multidimensional arrays of the
types listed.

 Rules for Data Conversion Between Java and MATLAB

9-5



MATLAB to Java Conversion Rules

MATLAB Type Java Type (Primitive) Java Type (Object)
cell Not applicable Object

Note Cell arrays are constructed and accessed as
arrays of MWArray.

structure Not applicable Object

Note Structure arrays are constructed and
accessed as arrays of MWArray.

char char java.lang.Character
double double java.lang.Double
single float java.lang.Float
int8 byte java.lang.Byte
int16 short java.lang.Short
int32 int java.lang.Integer
int64 long java.lang.Long
uint8 byte java.lang.Byte

Java has no unsigned type to represent the uint8
used in MATLAB. Construction of and access to
MATLAB arrays of an unsigned type requires
conversion.

uint16 short java.lang.short

Java has no unsigned type to represent the uint16
used in MATLAB. Construction of and access to
MATLAB arrays of an unsigned type requires
conversion.

uint32 int java.lang.Integer

Java has no unsigned type to represent the uint32
used in MATLAB. Construction of and access to
MATLAB arrays of an unsigned type requires
conversion.

uint64 long java.lang.Long

Java has no unsigned type to represent the uint64
used in MATLAB. Construction of and access to
MATLAB arrays of an unsigned type requires
conversion.

logical boolean java.lang.Boolean
Function handle Not supported
Java class Not supported

9 Reference Information for Java

9-6



MATLAB Type Java Type (Primitive) Java Type (Object)
User class Not supported

Unsupported MATLAB Array Types
Java has no unsigned types to represent the uint8, uint16, uint32, and uint64 types used in
MATLAB. Construction of and access to MATLAB arrays of an unsigned type requires conversion.

 Rules for Data Conversion Between Java and MATLAB

9-7



Programming Interfaces Generated by MATLAB Compiler SDK

In this section...
“APIs Based on MATLAB Function Signatures” on page 9-8
“Standard API” on page 9-8
“mlx API” on page 9-9
“Code Fragment: Signatures Generated for the myprimes Example” on page 9-10

APIs Based on MATLAB Function Signatures
The compiler generates two kinds of interfaces to handle MATLAB function signatures.

• A standard signature in Java

This interface specifies input arguments for each overloaded method as one or more input
arguments of class java.lang.Object or any subclass (including subclasses of MWArray). The
standard interface specifies return values, if any, as a subclass of MWArray.

• mlx API

This interface allows the user to specify the inputs to a function as an Object array, where each
array element is one input argument. Similarly, the user also gives the mlx interface a
preallocated Object array to hold the outputs of the function. The allocated length of the output
array determines the number of desired function outputs.

The mlx interface may also be accessed using java.util.List containers in place of Object
arrays for the inputs and outputs. Note that if List containers are used, the output List passed in
must contain a number of elements equal to the desired number of function outputs.

For example, this would be incorrect usage:

java.util.List outputs = new ArrayList(3);
myclass.myfunction(outputs, inputs); // outputs 0 elements!

The correct usage is:

java.util.List outputs = Arrays.asList(new Object[3]);
myclass.myfunction(outputs, inputs); // list has 3 elements

Typically, you use the standard interface when you want to call MATLAB functions that return a single
array. In most other cases, use the mlx interface.

Standard API
The standard calling interface returns an array of one or more MWArray objects.

The standard API for a generic function with none, one, more than one, or a variable number of
arguments, is shown in the following table.

9 Reference Information for Java

9-8



Arguments API to Use
Generic MATLAB function function [Out1, Out2, ..., varargout] = foo(In1, In2, ...,

 InN, varargin)

API if there are no input arguments public Object[] foo(int numArgsOut) 

API if there is one input argument public Object[] foo(int numArgsOut, Object In1) 

API if there are two to N input
arguments

public Object[] foo(
int numArgsOut, 
Object In1,
Object In2, 
... Object InN
) 

API if there are optional arguments,
represented by the varargin
argument

public Object[] foo(
int numArgsOut,
 Object in1,
 Object in2,
 ..., Object InN,
Object varargin
)

The following table shows details about the arguments for these samples of standard signatures.

Argument Description Details About Argument
numArgsOut Number of outputs An integer indicating the number of outputs you want

the method to return. To return no arguments, omit
this argument.

The value of numArgsOut must be less than or equal
to the MATLAB function nargout.

The numArgsOut argument must always be the first
argument in the list.

In1, In2, ...InN Required input
arguments

All arguments that follow numArgsOut in the
argument list are inputs to the method being called.

Specify all required inputs first. Each required input
must be of class MWArray or any class derived from
MWArray.

varargin Optional inputs You can also specify optional inputs if your MATLAB
code uses the varargin input: list the optional
inputs, or put them in an Object[] argument,
placing the array last in the argument list.

Out1,
Out2, ...OutN

Output arguments With the standard calling interface, all output
arguments are returned as an array of MWArrays.

mlx API
Consider a function with the following structure:

function [Out1, Out2, ..., varargout] = foo(In1, In2, ..., 
                          InN, varargin)

 Programming Interfaces Generated by MATLAB Compiler SDK

9-9



The compiler generates the following API as the mlx interface:

public void foo (List outputs, List inputs) throws MWException;
public void foo (Object[] outputs, Object[] inputs) 
                                            throws MWException;

Code Fragment: Signatures Generated for the myprimes Example
For a specific example, consider the myprimes method. This method has one input argument, so the
compiler generates three overloaded methods in Java.

When you add myprimes to the class myclass and build the class, the compiler generates the
myclass.java file. A fragment of myclass.java is listed below to show overloaded
implementations of the myprimes method in the Java code.

/* mlx interface - List version */
public void myprimes(List lhs, List rhs) throws MWException
{
    (implementation omitted)
}
/* mlx interface - Array version */
public void myprimes(Object[] lhs, Object[] rhs) 
                                        throws MWException
{
    (implementation omitted)
 }
/* Standard interface - no inputs*/
public Object[] myprimes(int nargout) throws MWException
   {
      (implementation omitted)
   }
/* Standard interface - one input*/
public Object[] myprimes(int nargout, Object n) 
                                      throws MWException
   {
      (implementation omitted)
   }

The standard interface specifies inputs to the function within the argument list and outputs as return
values. The second implementation demonstrates the feval interface, the third implementation
shows the interface to be used if there are no input arguments, and the fourth shows the
implementation to be used if there is one input argument. Rather than returning function outputs as a
return value, the feval interface includes both input and output arguments in the argument list.
Output arguments are specified first, followed by input arguments.

9 Reference Information for Java

9-10



Share MATLAB Runtime Instances
In a shared MATLAB Runtime instance or Singleton runtime, you create an instance of the MATLAB
Runtime that can be shared among all subsequent class instances within a component.

Advantages and Disadvantages of Using a Singleton
In most cases, a singleton MATLAB Runtime will provide many more advantages than disadvantages.

Singleton Advantages

If you have multiple users running from a specific instance of MATLAB, using a singleton will most
likely:

• Utilize system memory more efficiently
• Decrease MATLAB Runtime start-up or initialization time

Singleton Disadvantages

Using a singleton may not benefit you if your application uses a large number of global variables. This
causes crosstalk.

 Share MATLAB Runtime Instances

9-11





Functions

10



compiler.build.javaPackage
Create Java package for deployment outside MATLAB

Syntax
compiler.build.javaPackage(Files)
compiler.build.javaPackage(Files,Name,Value)
compiler.build.javaPackage(ClassMap)
compiler.build.javaPackage(ClassMap,Name,Value)
compiler.build.javaPackage(opts)
results = compiler.build.javaPackage( ___ )

Description
compiler.build.javaPackage(Files) creates a Java package using the MATLAB functions
specified by Files. Before creating Java packages, see Configure Your Java Environment on page 1-
3.

compiler.build.javaPackage(Files,Name,Value) creates a Java package with additional
options specified using one or more name-value arguments. Options include the class name, output
directory, and additional files to include.

compiler.build.javaPackage(ClassMap) creates a Java package with a class mapping specified
using a container.Map object ClassMap.

compiler.build.javaPackage(ClassMap,Name,Value) creates a Java package using
ClassMap and additional options specified using one or more name-value arguments. Options include
the package name, output directory, and additional files to include.

compiler.build.javaPackage(opts) creates a Java package with options specified using a
compiler.build.JavaPackageOptions object opts. You cannot specify any other options using
name-value arguments.

results = compiler.build.javaPackage( ___ ) returns build information as a
compiler.build.Results object using any of the input argument combinations in previous
syntaxes. The build information consists of the build type, paths to the compiled files, and build
options.

Examples

Create Java Package Using File Input

Create a Java package using a function file that generates a magic square.

In MATLAB, locate the MATLAB function that you want to deploy as a Java package. For this example,
use the file magicsquare.m located in matlabroot\extern\examples\compiler.
appFile = fullfile(matlabroot,'extern','examples','compiler','magicsquare.m');

Build a Java package using the compiler.build.javaPackage command.

10 Functions

10-2



compiler.build.javaPackage(appFile);

This syntax generates the following within a folder named magicsquarejavaPackage in your
current working directory:

• classes — Folder that contains the Java class files and the deployable archive file.
• doc — Folder that contains HTML documentation for all classes in the package.
• examples — Folder that contains Java source code files.
• GettingStarted.html — File that contains information on integrating your package.
• includedSupportPackages.txt — Text file that lists all support files included in the package.
• magicsquare.jar — Java archive file.
• mccExcludedFiles.log — Log file that contains a list of any toolbox functions that were not

included in the application. For information on non-supported functions, see Functions Not
Supported For Compilation.

• readme.txt — Readme file that contains information on deployment prerequisites and the list of
files to package for deployment.

• requiredMCRProducts.txt — Text file that contains product IDs of products required by
MATLAB Runtime to run the application.

• unresolvedSymbols.txt — Text file that contains information on unresolved symbols.

Customize Java Package

Create a Java package and customize it using name-value arguments.

For this example, use the files flames.m and flames.mat located in matlabroot\extern
\examples\compiler.
appFile = fullfile(matlabroot,'extern','examples','compiler','flames.m');
MATFile = fullfile(matlabroot,'extern','examples','compiler','flames.mat');

Build a Java package using the compiler.build.javaPackage command. Use name-value
arguments to specify the package name, add a MAT-file, and enable verbose output.
compiler.build.javaPackage(appFile,'PackageName','JavaFlames',...
    'AdditionalFiles',MATFile,...
    'Verbose','on');

Create Java Package Using Class Map Input

Create a Java package using a class map and multiple MATLAB functions.

Create a containers.Map object whose keys are class names and whose values are the locations of
function files.
cmap = containers.Map;
cmap('Class1') = {'exampleFcn1.m','exampleFcn2.m'};
cmap('Class2') = {'exampleFcn3.m','exampleFcn4.m'};

Build a Java package using the compiler.build.javaPackage command.
compiler.build.javaPackage(cmap);

You can also specify options using name-value arguments when you build the Java package.

 compiler.build.javaPackage

10-3



compiler.build.javaPackage(cmap,...
    'PackageName','ExamplePackage',...
    'Verbose','on');

Customize Multiple Components Using Options Object

Customize multiple Java packages using a compiler.build.JavaPackageOptions object on a
Windows system to specify a common output directory, use debug symbols, and enable verbose
output.

For this example, use the file magicsquare.m located in matlabroot\extern\examples
\compiler.
appFile = fullfile(matlabroot,'extern','examples','compiler','magicsquare.m');

Create a JavaPackageOptions object using appFile and additional options specified using name-
value arguments.
opts = compiler.build.JavaPackageOptions(appFile,...
    'OutputDir','D:\Documents\MATLAB\work\JavaPackageBatch',...
    'DebugBuild','on',...
    'Verbose','on')

opts =

  JavaPackageOptions with properties:

               ClassMap: [1×1 containers.Map]
             DebugBuild: on
            PackageName: 'example.magicsquare'
  SampleGenerationFiles: {}
        AdditionalFiles: {}
    AutoDetectDataFiles: on
        SupportPackages: {'autodetect'}
                Verbose: on
              OutputDir: 'D:\Documents\MATLAB\work\JavaPackageBatch'

   Class Map Information
       magicsquareClass: {'C:\Program Files\MATLAB\R2022b\extern\examples\compiler\magicsquare.m'}

Build the Java package using the JavaPackageOptions object.
compiler.build.javaPackage(opts);

To compile using the function file hello.m with the same options, use dot notation to modify the
ClassMap of the existing JavaPackageOptions object before running the build function again.
remove(opts.ClassMap, keys(opts.ClassMap));
opts.ClassMap('helloClass') = fullfile(matlabroot,'extern','examples','compiler','hello.m');
compiler.build.javaPackage(opts);

By modifying the ClassMap argument and recompiling, you can compile multiple components using
the same options object.

Get Build Information from Java Package

Create a Java package and save information about the build type, generated files, included support
packages, and build options to a compiler.build.Results object.

10 Functions

10-4



Compile using the file magicsquare.m located in matlabroot\extern\examples\compiler.
results = compiler.build.javaPackage('magicsquare.m')

results = 

  Results with properties:

              BuildType: 'javaPackage'
                  Files: {3×1 cell}
IncludedSupportPackages: {}
                Options: [1×1 compiler.build.JavaPackageOptions]

The Files property contains the paths to the following:

• doc folder
• magicsquare.jar
• GettingStarted.html

Input Arguments
Files — Files implementing MATLAB functions
character vector | string scalar | cell array of character vectors | string array

Files implementing MATLAB functions, specified as a character vector, a string scalar, a string array,
or a cell array of character vectors. File paths can be relative to the current working directory or
absolute. Files must have a .m extension.
Example: ["myfunc1.m","myfunc2.m"]
Data Types: char | string | cell

ClassMap — Class map
containers.Map object

Class map, specified as a containers.Map object. Map keys are class names and each value is the
set of files mapped to the corresponding class. Files must have a .m extension.
Example: cmap

opts — Java package build options
compiler.build.JavaPackageOptions object

Java package build options, specified as a compiler.build.JavaPackageOptions object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Verbose','on'

AdditionalFiles — Additional files
character vector | string scalar | cell array of character vectors | string array

 compiler.build.javaPackage

10-5



Additional files and folders to include in the Java package, specified as a character vector, a string
scalar, a string array, or a cell array of character vectors. Paths can be relative to the current working
directory or absolute.
Example: 'AdditionalFiles',["myvars.mat","data.txt"]
Data Types: char | string | cell

AutoDetectDataFiles — Flag to automatically include data files
'on' (default) | on/off logical value

Flag to automatically include data files, specified as 'on' or 'off', or as numeric or logical 1 (true)
or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can
use the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then data files that you provide as inputs to certain functions
(such as load and fopen) are automatically included in the Java package.

• If you set this property to 'off', then you must add data files to the package using the
AdditionalFiles property.

Example: 'AutoDetectDataFiles','off'
Data Types: logical

ClassName — Name of Java class
character vector | string scalar

Name of the Java class, specified as a character vector or a string scalar. You cannot specify this
option if you use a ClassMap input. Class names must meet Java class name requirements.

The default value is the name of the first file listed in the Files argument appended with Class.
Example: 'ClassName','magicsquareClass'
Data Types: char | string

DebugBuild — Flag to enable debug symbols
'off' (default) | on/off logical value

Flag to enable debug symbols, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0
(false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use
the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then the compiled package contains debug symbols.
• If you set this property to 'off', then the compiled package does not contain debug symbols.

Example: 'DebugBuild','on'
Data Types: logical

OutputDir — Path to output directory
character vector | string scalar

Path to the output directory where the build files are saved, specified as a character vector or a string
scalar. The path can be relative to the current working directory or absolute.

10 Functions

10-6



The default name of the build folder is the package name appended with javaPackage.
Example: 'OutputDir','D:\Documents\MATLAB\work\mymagicjavaPackage'
Data Types: char | string

PackageName — Name of Java package
character vector | string scalar

Name of the Java package, specified as a character vector or a string scalar. Specify 'PackageName'
as a namespace, which is a period-separated list, such as companyname.groupname.component.
The name of the generated package is set to the last entry of the period-separated list. The name
must begin with a letter and contain only alphabetic characters and periods.
Example: 'PackageName','mathworks.javapackage.mymagic'
Data Types: char | string

SampleGenerationFiles — MATLAB sample files
character vector | string scalar | cell array of character vectors | string array

MATLAB sample files used to generate sample Java driver files for functions included within the
package, specified as a character vector, a string scalar, a string array, or a cell array of character
vectors. Paths can be relative to the current working directory or absolute. Files must have a .m
extension.
Example: 'SampleGenerationFiles',["sample1.m","sample2.m"]
Data Types: char | string | cell

SupportPackages — Support packages
'autodetect' (default) | 'none' | string scalar | cell array of character vectors | string array

Support packages to include, specified as one of the following options:

• 'autodetect' (default) — The dependency analysis process detects and includes the required
support packages automatically.

• 'none' — No support packages are included. Using this option can cause runtime errors.
• A string scalar, character vector, or cell array of character vectors — Only the specified support

packages are included. To list installed support packages or those used by a specific file, see
compiler.codetools.deployableSupportPackages.

Example: 'SupportPackages',{'Deep Learning Toolbox Converter for TensorFlow
Models','Deep Learning Toolbox Model for Places365-GoogLeNet Network'}

Data Types: char | string | cell

Verbose — Flag to control build verbosity
'off' (default) | on/off logical value

Flag to control build verbosity, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0
(false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use
the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then the MATLAB command window displays progress
information indicating compiler output during the build process.

 compiler.build.javaPackage

10-7



• If you set this property to 'off', then the command window does not display progress
information.

Example: 'Verbose','on'
Data Types: logical

Output Arguments
results — Build results
compiler.build.Results object

Build results, returned as a compiler.build.Results object. The Results object contains:

• Build type, which is 'javaPackage'
• Paths to the compiled files
• A list of included support packages
• Build options, specified as a JavaPackageOptions object

Version History
Introduced in R2021a

See Also
compiler.build.JavaPackageOptions

10 Functions

10-8



compiler.build.JavaPackageOptions
Options for building Java packages

Syntax
opts = compiler.build.JavaPackageOptions(Files)
opts = compiler.build.JavaPackageOptions(Files,Name,Value)
opts = compiler.build.JavaPackageOptions(ClassMap)
opts = compiler.build.JavaPackageOptions(ClassMap,Name,Value)

Description
opts = compiler.build.JavaPackageOptions(Files) creates a JavaPackageOptions
object using MATLAB functions specified by Files. Use the JavaPackageOptions object as an
input to the compiler.build.javaPackage function.

opts = compiler.build.JavaPackageOptions(Files,Name,Value) creates a
JavaPackageOptions object with options specified using one or more name-value arguments.
Options include the package name, output directory, and additional files to include.

opts = compiler.build.JavaPackageOptions(ClassMap) creates a JavaPackageOptions
object with a class mapping specified using a container.Map object ClassMap.

opts = compiler.build.JavaPackageOptions(ClassMap,Name,Value) creates a
JavaPackageOptions object with a class mapping specified using ClassMap and options specified
using one or more name-value arguments.

Examples

Create Java Package Options Object Using File

Create a JavaPackageOptions object using file input.

For this example, use the file magicsquare.m located in matlabroot\extern\examples
\compiler.

appFile = fullfile(matlabroot,'extern','examples','compiler','magicsquare.m');
opts = compiler.build.JavaPackageOptions(appFile)

opts = 

  JavaPackageOptions with properties:

                 ClassMap: [1×1 containers.Map]
               DebugBuild: off
              PackageName: 'example.magicsquare'
    SampleGenerationFiles: {}
          AdditionalFiles: {}
      AutoDetectDataFiles: on
        SupportPackages: {'autodetect'}

 compiler.build.JavaPackageOptions

10-9



                  Verbose: off
                OutputDir: '.\magicsquarejavaPackage'

   Class Map Information
         magicsquareClass: {'C:\Program Files\MATLAB\R2022b\extern\examples\compiler'}

You can modify the property values of an existing JavaPackageOptions object using dot notation.
For example, enable verbose output.
opts.Verbose = 'on'

opts = 

  JavaPackageOptions with properties:

                 ClassMap: [1×1 containers.Map]
               DebugBuild: off
              PackageName: 'example.magicsquare'
    SampleGenerationFiles: {}
          AdditionalFiles: {}
      AutoDetectDataFiles: on
        SupportPackages: {'autodetect'}
                  Verbose: on
                OutputDir: '.\magicsquarejavaPackage'

   Class Map Information
         magicsquareClass: {'C:\Program Files\MATLAB\R2022b\extern\examples\compiler'}

Use the JavaPackageOptions object as an input to the compiler.build.javaPackage function
to build a Java package.
buildResults = compiler.build.javaPackage(opts);

Customize Java Package Options Object

Create a JavaPackageOptions object and customize it using name-value arguments.

For this example, use the file magicsquare.m located in matlabroot\extern\examples
\compiler. Use name-value arguments to specify the output directory and disable automatic
detection of data files.

appFile = fullfile(matlabroot,'extern','examples','compiler','magicsquare.m');
opts = compiler.build.JavaPackageOptions(appFile,...
    'OutputDir','D:\Documents\MATLAB\work\MagicJavaPackage',...
    'AutoDetectDataFiles','off')

opts = 

  JavaPackageOptions with properties:

                 ClassMap: [1×1 containers.Map]
               DebugBuild: off
              PackageName: 'example.magicsquare'
    SampleGenerationFiles: {}
          AdditionalFiles: {}
      AutoDetectDataFiles: off
        SupportPackages: {'autodetect'}

10 Functions

10-10



                  Verbose: off
                OutputDir: 'D:\Documents\MATLAB\work\MagicJavaPackage'

   Class Map Information
         magicsquareClass: {'C:\Program Files\MATLAB\R2022b\extern\examples\compiler'}

You can modify the property values of an existing JavaPackageOptions object using dot notation.
For example, enable verbose output.
opts.Verbose = 'on'

opts = 

  JavaPackageOptions with properties:

                 ClassMap: [1×1 containers.Map]
               DebugBuild: off
              PackageName: 'example.magicsquare'
    SampleGenerationFiles: {}
          AdditionalFiles: {}
      AutoDetectDataFiles: off
        SupportPackages: {'autodetect'}
                  Verbose: on
                OutputDir: 'D:\Documents\MATLAB\work\MagicJavaPackage'

   Class Map Information
         magicsquareClass: {'C:\Program Files\MATLAB\R2022b\extern\examples\compiler'}

Use the JavaPackageOptions object as an input to the compiler.build.javaPackage function
to build a Java package.
buildResults = compiler.build.javaPackage(opts);

Create Java Package Options Object Using Class Map

Create a JavaPackageOptions object using a class map.

Create a containers.Map object whose keys are class names and whose values are MATLAB
function files.
cmap = containers.Map;
cmap('Class1') = {'exampleFcn1.m','exampleFcn2.m'};
cmap('Class2') = {'exampleFcn3.m','exampleFcn4.m'};

Create the JavaPackageOptions object using the class map cmap.

opts = compiler.build.JavaPackageOptions(cmap)

opts = 

  JavaPackageOptions with properties:

                 ClassMap: [1×1 containers.Map]
               DebugBuild: off
              PackageName: 'example.magicsquare'
    SampleGenerationFiles: {}
          AdditionalFiles: {}
      AutoDetectDataFiles: on
        SupportPackages: {'autodetect'}

 compiler.build.JavaPackageOptions

10-11



                  Verbose: off
                OutputDir: '.\magicsquarejavaPackage'

  Class Map Information
                   Class1: {2×1 cell}
                   Class2: {2×1 cell}

You can also create a JavaPackageOptions object using name-value arguments or modify an
existing object using dot notation. For this example, specify an output directory, enable verbose
output, and disable automatic detection of data files.

opts = compiler.build.JavaPackageOptions(cmap,...
    'OutputDir','D:\Documents\MATLAB\work\MagicJavaPackage',...
    'Verbose','On');
opts.AutoDetectDataFiles = 'off';

opts = 

  JavaPackageOptions with properties:

                 ClassMap: [1×1 containers.Map]
               DebugBuild: off
              PackageName: 'example.magicsquare'
    SampleGenerationFiles: {}
          AdditionalFiles: {}
      AutoDetectDataFiles: off
          SupportPackages: {'autodetect'}
                  Verbose: on
                OutputDir: 'D:\Documents\MATLAB\work\MagicJavaPackage'

  Class Map Information
                   Class1: {2×1 cell}
                   Class2: {2×1 cell}

Use the JavaPackageOptions object as an input to the compiler.build.javaPackage function
to build a Java package.
buildResults = compiler.build.javaPackage(opts);

Input Arguments
Files — Files implementing MATLAB functions
character vector | string scalar | cell array of character vectors | string array

Files implementing MATLAB functions, specified as a character vector, a string scalar, a string array,
or a cell array of character vectors. File paths can be relative to the current working directory or
absolute. Files must have a .m extension.
Example: ["myfunc1.m","myfunc2.m"]
Data Types: char | string | cell

ClassMap — Class map
containers.Map object

Class map, specified as a containers.Map object. Map keys are class names and each value is the
set of files mapped to the corresponding class. Files must have a .m extension.

10 Functions

10-12



Example: cmap

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Verbose','on'

AdditionalFiles — Additional files
character vector | string scalar | cell array of character vectors | string array

Additional files and folders to include in the Java package, specified as a character vector, a string
scalar, a string array, or a cell array of character vectors. Paths can be relative to the current working
directory or absolute.
Example: 'AdditionalFiles',["myvars.mat","data.txt"]
Data Types: char | string | cell

AutoDetectDataFiles — Flag to automatically include data files
'on' (default) | on/off logical value

Flag to automatically include data files, specified as 'on' or 'off', or as numeric or logical 1 (true)
or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can
use the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then data files that you provide as inputs to certain functions
(such as load and fopen) are automatically included in the Java package.

• If you set this property to 'off', then you must add data files to the package using the
AdditionalFiles property.

Example: 'AutoDetectDataFiles','off'
Data Types: logical

ClassName — Name of Java class
character vector | string scalar

Name of the Java class, specified as a character vector or a string scalar. You cannot specify this
option if you use a ClassMap input. Class names must meet Java class name requirements.

The default value is the name of the first file listed in the Files argument appended with Class.
Example: 'ClassName','magicsquareClass'
Data Types: char | string

DebugBuild — Flag to enable debug symbols
'off' (default) | on/off logical value

Flag to enable debug symbols, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0
(false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use

 compiler.build.JavaPackageOptions

10-13



the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then the compiled package contains debug symbols.
• If you set this property to 'off', then the compiled package does not contain debug symbols.

Example: 'DebugBuild','on'
Data Types: logical

OutputDir — Path to output directory
character vector | string scalar

Path to the output directory where the build files are saved, specified as a character vector or a string
scalar. The path can be relative to the current working directory or absolute.

The default name of the build folder is the package name appended with javaPackage.
Example: 'OutputDir','D:\Documents\MATLAB\work\mymagicjavaPackage'
Data Types: char | string

PackageName — Name of Java package
character vector | string scalar

Name of the Java package, specified as a character vector or a string scalar. Specify 'PackageName'
as a namespace, which is a period-separated list, such as companyname.groupname.component.
The name of the generated package is set to the last entry of the period-separated list. The name
must begin with a letter and contain only alphabetic characters and periods.
Example: 'PackageName','mathworks.javapackage.mymagic'
Data Types: char | string

SampleGenerationFiles — MATLAB sample files
character vector | string scalar | cell array of character vectors | string array

MATLAB sample files used to generate sample Java driver files for functions included within the
package, specified as a character vector, a string scalar, a string array, or a cell array of character
vectors. Paths can be relative to the current working directory or absolute. Files must have a .m
extension.
Example: 'SampleGenerationFiles',["sample1.m","sample2.m"]
Data Types: char | string | cell

SupportPackages — Support packages
'autodetect' (default) | 'none' | string scalar | cell array of character vectors | string array

Support packages to include, specified as one of the following options:

• 'autodetect' (default) — The dependency analysis process detects and includes the required
support packages automatically.

• 'none' — No support packages are included. Using this option can cause runtime errors.
• A string scalar, character vector, or cell array of character vectors — Only the specified support

packages are included. To list installed support packages or those used by a specific file, see
compiler.codetools.deployableSupportPackages.

10 Functions

10-14



Example: 'SupportPackages',{'Deep Learning Toolbox Converter for TensorFlow
Models','Deep Learning Toolbox Model for Places365-GoogLeNet Network'}

Data Types: char | string | cell

Verbose — Flag to control build verbosity
'off' (default) | on/off logical value

Flag to control build verbosity, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0
(false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use
the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then the MATLAB command window displays progress
information indicating compiler output during the build process.

• If you set this property to 'off', then the command window does not display progress
information.

Example: 'Verbose','on'
Data Types: logical

Output Arguments
opts — Java package build options
JavaPackageOptions object

Java package build options, returned as a JavaPackageOptions object.

Version History
Introduced in R2021a

See Also
compiler.build.javaPackage

 compiler.build.JavaPackageOptions

10-15



mcrinstaller
Display version and location information for MATLAB Runtime installer corresponding to current
platform

Syntax
[installer_path, major, minor, platform] = mcrinstaller

Description
[installer_path, major, minor, platform] = mcrinstaller displays information about
available MATLAB Runtime installers.

If no MATLAB Runtime installer is found, you are prompted to download an installer using the
command compiler.runtime.download.

You must distribute the MATLAB Runtime library to your end users to enable them to run applications
developed with MATLAB Compiler or MATLAB Compiler SDK.

For more information about the MATLAB Runtime installer, see “Install and Configure MATLAB
Runtime”.

Examples

Find MATLAB Runtime Installer Location

Display the location of MATLAB Runtime installers for a particular platform. This example shows
output for a win64 system. The release number is called R20xxx indicating the release for which the
MATLAB Runtime installer has been downloaded.

mcrinstaller

C:\Program Files\MATLAB\R20xxx\toolbox\compiler\deploy\win64\MCR_R20xxx_win64_installer.exe

For example, for R2018b, the path would be:

C:\Program Files\MATLAB\R2018b\toolbox\compiler\deploy\win64\MCR_R2018b_win64_installer.exe

Output Arguments
installer_path — Full path to the installer
character vector

The installer_path is the full path to the installer for the current platform.

major — Major version number
positive integer scalar

The major is the major version number of the installer.

10 Functions

10-16



minor — Minor version number
positive integer scalar

The minor is the minor version number of the installer.

platform — Name of the current platform
character vector

The platform is the name of the current platform (returned by COMPUTER(arch)).

See Also
mcrversion | compiler.runtime.download

Topics
“Install and Configure MATLAB Runtime”

 mcrinstaller

10-17



mcrversion
Return MATLAB Runtime version number that matches MATLAB version

Syntax
[major,minor] = mcrversion

Description
[major,minor] = mcrversion returns the MATLAB Runtime version number matching the
version of MATLAB from where the command is executed. The MATLAB Runtime version number
consists of two digits, separated by a decimal point. This function returns each digit as a separate
output variable: major, minor.

If the version number ever increases to three or more digits, call mcrversion with more outputs, as
follows:

[major, minor, point] = mcrversion;

At this time, all outputs past “minor” are returned as zeros.

Examples

Return the MATLAB Runtime Version

Return the MATLAB Runtime Version Number Matching the Version of MATLAB.

[major, minor] = mcrversion

major =
     9
minor =
     9

Output Arguments
major — Major version number
positive integer scalar

Major version number returned as a positive integer scalar.
Data Types: double

minor — Minor version number
positive integer scalar

Minor version number returned as a positive integer scalar.
Data Types: double

10 Functions

10-18



See Also
compiler.runtime.download | mcrinstaller

Topics
“Install and Configure MATLAB Runtime”

 mcrversion

10-19



waitForFigures
Block execution of a calling program as long as figures created in encapsulated MATLAB code are
displayed

Syntax
objName.waitForFigures();

Description
waitForFigures() blocks execution of a calling program as long as figures created in encapsulated
MATLAB code are displayed. Typically you use waitForFigures when:

• There are one or more figures open that were created by a Java class created by the MATLAB
Compiler SDK product.

• The method that displays the graphics requires user input before continuing.
• The method that calls the figures was called from main() in a console program.

When waitForFigures is called, execution of the calling program is blocked if any figures created
by the calling object remain open.

Caution Use care when calling the waitForFigures method. Calling this method from an
interactive program like Microsoft® Excel® can hang the application. Call this method only from
console-based programs.

Version History
Introduced before R2006a

See Also
Topics
“Block Console Display When Creating Figures in Java” on page 2-39

10 Functions

10-20


	Overview
	Product Overview
	How Does Java Package Deployment Work?

	Configure Your Environment for Generating Java Packages
	Install JDK or JRE
	Set JAVA_HOME Environment Variable
	Set CLASSPATH
	Set Shared Library Path Variable


	Programming
	Integrate Simple MATLAB Function into Java Application
	Files
	Procedure

	How MATLAB Compiler SDK Java Integration Works
	MWArray Data Conversion Classes
	Automatic and Manual Conversion to MATLAB Types
	Function Signatures Generated by MATLAB Compiler SDK
	Interaction Between MATLAB Compiler SDK and JVM

	Limitations on Multiple Packages in Single Java Application
	Combine Packages with MATLAB Function Handles
	Combining Packages with Objects

	Error Handling
	Error Overview
	Handle Checked Exceptions
	Handle Unchecked Exceptions
	Alternatives to Using System.exit

	Manage MATLAB Resources in JVM
	Name MATLAB Objects for Resource Maintenance
	Release Resources of MATLAB Objects

	Interaction Between MATLAB Compiler SDK and JVM
	Specify Parallel Computing Toolbox Profile in Java Application
	Step 1: Write Parallel Computing Toolbox Code
	Step 2: Set Parallel Computing Toolbox Profile
	Step 3: Compile Your Code into Java Package
	Step 4: Write Java Application
	Compile and Run Application

	Dynamically Specify Options to MATLAB Runtime
	What Options Can You Specify?
	Sett and Retrieve MATLAB Runtime Option Values Using MWApplication

	Convert Data Between Java and MATLAB
	Automatic Conversion to MATLAB Types
	Manual Conversion of Data Types
	Handle Return Values Of Unknown Type
	Pass Java Objects by Reference

	Set Java Properties
	Set Java System Properties
	Ensure a Consistent GUI Appearance

	Block Console Display When Creating Figures in Java
	Ensure Multiplatform Portability for Java
	Define Embedding and Extraction Options for Deployable Java Archive
	Extraction Options Using MWComponentOptions Class
	Extraction Options Using Environment Variables


	Distribute Integrated Java Applications
	Package Java Applications
	About the MATLAB Runtime
	How is MATLAB Runtime Different from MATLAB?
	Performance Considerations for MATLAB Runtime


	Distribute to End Users
	MATLAB Runtime Path Settings for Development and Testing
	Path for Java Development on All Platforms
	Path Modifications Required for Accessibility
	Windows Settings for Development and Testing
	Linux Settings for Development and Testing
	OS X Settings for Development and Testing

	Set MATLAB Runtime Path for Deployment
	Library Path Environment Variables and MATLAB Runtime Folders
	Windows
	Linux
	macOS
	Set Path Permanently on UNIX


	Sample Java Applications
	Display MATLAB Plot in Java Application
	Files
	Procedure

	Create Java Application with Multiple MATLAB Functions
	spectralanalysis Application
	Files
	Procedure

	Assign Multiple MATLAB Functions to Java Class
	MatrixMathApp Application
	Files
	Procedure
	Understanding the getfactor Program

	Create Java Phone Book Application Using Structure Array
	Files
	Procedure

	Pass Java Objects to MATLAB
	Overview
	OptimDemo Package
	Files
	Procedure

	Use MATLAB Class in Java Application
	Overview
	Procedure


	Working with MATLAB Figures and Images
	Roles in Working with Figures and Images
	Render MATLAB Image Data in Java
	Working with Images
	Create Buffered Images from MATLAB Array


	Creating Scalable Web Applications Using RMI
	Remote Method Invocation for Client-Server Applications
	Run Client and Server Using RMI
	RMI Prerequisites
	Files
	Procedure
	Run Client and Server

	Represent Native Java Cell and Struct Arrays
	Prerequisites
	Procedure


	Troubleshooting
	Common Failure Messages

	Reference Information for Java
	Requirements and Limitations of MATLAB Compiler SDK Java Target
	System Requirements
	Limitations of MATLAB Compiler SDK Java Target
	Path Modifications Required for Accessibility

	Rules for Data Conversion Between Java and MATLAB
	Java to MATLAB Conversion
	MATLAB to Java Conversion
	Unsupported MATLAB Array Types

	Programming Interfaces Generated by MATLAB Compiler SDK
	APIs Based on MATLAB Function Signatures
	Standard API
	mlx API
	Code Fragment: Signatures Generated for the myprimes Example

	Share MATLAB Runtime Instances
	Advantages and Disadvantages of Using a Singleton


	Functions
	compiler.build.javaPackage
	compiler.build.JavaPackageOptions
	mcrinstaller
	mcrversion
	waitForFigures


